Plants employ stomatal closure and reduced growth to avoid water deficiency damage. Reduced levels of the growth-promoting hormone gibberellin (GA) lead to increased tolerance to water deficit, but the underlying mechanism is unknown. Here, we show that the tomato () DELLA protein PROCERA (PRO), a negative regulator of GA signaling, acts in guard cells to promote stomatal closure and reduce water loss in response to water deficiency by increasing abscisic acid (ABA) sensitivity. The loss-of-function mutant exhibited increased stomatal conductance and rapid wilting under water deficit stress. Transgenic tomato overexpressing constitutively active stable DELLA proteins (S-) displayed the opposite phenotype. The effects of S- on stomatal aperture and water loss were strongly suppressed in the ABA-deficient mutant , indicating that these effects of S- are ABA dependent. While DELLA had no effect on ABA levels, guard cell ABA responsiveness was increased in S- and reduced in plants compared with the wild type. Expressing S- under the control of a guard-cell-specific promoter was sufficient to increase stomatal sensitivity to ABA and to reduce water loss under water deficit stress but had no effect on leaf size. This result indicates that DELLA promotes stomatal closure independently of its effect on growth.
The pleiotropic and complex gibberellin (GA) response relies on targeted proteolysis of DELLA proteins mediated by a GAactivated GIBBERELLIN-INSENSITIVE DWARF1 (GID1) receptor. The tomato (Solanum lycopersicum) genome encodes for a single DELLA protein, PROCERA (PRO), and three receptors, SlGID1a (GID1a), GID1b1, and GID1b2, that may guide specific GA responses. In this work, clustered regularly interspaced short palindromic repeats (CRISPR) /CRISPR associated protein 9-derived gid1 mutants were generated and their effect on GA responses was studied. The gid1 triple mutant was extremely dwarf and fully insensitive to GA. Under optimal growth conditions, the three receptors function redundantly and the single gid1 mutants exhibited very mild phenotypic changes. Among the three receptors, GID1a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID1a has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID1a in protracted response to GA that was saturated only at high doses. When the gid1 mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gid1a exhibited dwarfism that was strongly exacerbated by the loss of another GID1b receptor gene. These results suggest that multiple GA receptors contribute to phenotypic stability under environmental extremes.
Summary Plants reduce transpiration to avoid dehydration during drought episodes by stomatal closure and inhibition of canopy growth. Previous studies have suggested that low gibberellin (GA) activity promotes these ‘drought avoidance’ responses. Using genome editing, molecular, physiological and hormone analyses, we examined if drought regulates GA metabolism in tomato (Solanum lycopersicum) guard cells and leaves, and studied how this affects water loss. Water deficiency inhibited the expression of the GA biosynthesis genes GA20 oxidase1 (GA20ox1) and GA20ox2 and induced the GA deactivating gene GA2ox7 in guard cells and leaf tissue, resulting in reduced levels of bioactive GAs. These effects were mediated by abscisic acid‐dependent and abscisic acid‐independent pathways, and by the transcription factor TINY1. The loss of GA2ox7 attenuated stomatal response to water deficiency and during soil dehydration, ga2ox7 plants closed their stomata later, and wilted faster than wild‐type (WT) M82 cv. Mutations in GA20ox1 and GA20ox2, had no effect on stomatal closure, but reduced water loss due to the mutants’ smaller canopy areas. The results suggested that drought‐induced GA deactivation in guard cells, contributes to stomatal closure at the early stages of soil dehydration, whereas inhibition of GA synthesis in leaves suppresses canopy growth and restricts transpiration area.
Steroidal glycoalkaloids (SGAs) are protective metabolites constitutively produced by Solanaceae species. Genes and enzymes generating the vast structural diversity of SGAs have been largely identified. Yet, mechanisms of hormone pathways coordinating defence (jasmonate; JA) and growth (gibberellin; GA) controlling SGAs metabolism remain unclear.We used tomato to decipher the hormonal regulation of SGAs metabolism during growth vs defence tradeoff. This was performed by genetic and biochemical characterisation of different JA and GA pathways components, coupled with in vitro experiments to elucidate the crosstalk between these hormone pathways mediating SGAs metabolism.We discovered that reduced active JA results in decreased SGA production, while low levels of GA or its receptor led to elevated SGA accumulation. We showed that MYC1 and MYC2 transcription factors mediate the JA/GA crosstalk by transcriptional activation of SGA biosynthesis and GA catabolism genes. Furthermore, MYC1 and MYC2 transcriptionally regulate the GA signalling suppressor DELLA that by itself interferes in JA-mediated SGA control by modulating MYC activity through protein-protein interaction. Chemical and fungal pathogen treatments reinforced the concept of JA/GA crosstalk during SGA metabolism.These findings revealed the mechanism of JA/GA interplay in SGA biosynthesis to balance the cost of chemical defence with growth.
The tomato DELLA protein PROCERA promoted abscisic acid-induced stomatal closure and gene expression by upregulating the expression of the ABA transporter ABA-IMPORTING TRANSPORTER 1 in guard cells. List of author contributions: H.S. performed most of the experiments. Y.K. performed transport assays in yeast. N.I-E. provided some of the materials used in this study, H.S, M.S. and D.W. designed the experiment and analyzed the experimental data. H.S., M.S. and D.W. wrote the manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.