The constant evolution of resources in computational processing and machine learning algorithms, combined with the increasing complexity of embedded systems, made the hardware implementation of machine learning models more viable. This paper proposes a methodology for online implementation of a support vector machine classifier through the development of a simple, concise, and easily adapted algorithm for data classification. The system was validated through the development of an application that classifies disturbances in a power transformer, followed by a comparison with the results obtained with the Library for Support Vector Machines (LIBSVM). Besides the very similar results when compared with the LIBSVM, the proposed methodology achieved high overall accuracy and fast classification time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.