Rpp21, a protein subunit of human nuclear ribonuclease P (RNase P) was cloned by virtue of its homology with Rpr2p, an essential subunit of Saccharomyces cerevisiae nuclear RNase P. Rpp21 is encoded by a gene that resides in the class I gene cluster of the major histocompatibility complex, is associated with highly purified RNase P, and binds precursor tRNA. Rpp21 is predominantly localized in the nucleoplasm but is also observed in nucleoli and Cajal bodies when expressed at high levels. Intron retention and splice-site selection in Rpp21 precursor mRNA regulate the intranuclear distribution of the protein products and their association with the RNase P holoenzyme. Our study reveals that dynamic nuclear structures that include nucleoli, the perinucleolar compartment and Cajal bodies are all involved in the production and assembly of human RNase P.
Ribonuclease P (RNase P) is an essential enzyme that processes the 5' leader sequence of precursor tRNA. Eubacterial RNase P is an RNA enzyme, while its eukaryotic counterpart acts as catalytic ribonucleoprotein, consisting of RNA and numerous protein subunits. To study the latter form, we reconstitute human RNase P activity, demonstrating that the subunits H1 RNA, Rpp21, and Rpp29 are sufficient for 5' cleavage of precursor tRNA. The reconstituted RNase P precisely delineates its cleavage sites in various substrates and hydrolyzes the phosphodiester bond. Rpp21 and Rpp29 facilitate catalysis by H1 RNA, which seems to require a phylogenetically conserved pseudoknot structure for function. Unexpectedly, Rpp29 forms a catalytic complex with M1 RNA of E. coli RNase P. The results uncover the core components of eukaryotic RNase P, reveal its evolutionary origin in translation, and provide a paradigm for studying RNA-based catalysis by other nuclear and nucleolar ribonucleoprotein enzymes.
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.