1These authors contributed equally to this study.Abbreviations used: AMPA, a-amino-3-hydroxy-5-methylisoxazole-4-propionate; BDNF, brain-derived neurotrophic factor; CMS, chronic mild stress; NAc, nucleus accumbens; PFC, prefrontal cortex; VTA, ventral tegmental area. AbstractExposure to chronic mild stress (CMS) is known to induce anhedonia in adult animals, and is associated with induction of depression in humans. However, the behavioral effects of CMS in young animals have not yet been characterized, and little is known about the long-term neurochemical effects of CMS in either young or adult animals. Here, we found that CMS induces anhedonia in adult but not in young animals, as measured by a set of behavioral paradigms. Furthermore, while CMS decreased neurogenesis and levels of brainderived neurotrophic factor (BDNF) in the hippocampus of adult animals, it increased these parameters in young animals. We also found that CMS altered a-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor GluR1 subunit levels in the hippocampus and the nucleus accumbens of adult, but not young animals. Finally, no significant differences were observed between the effects of CMS on circadian corticosterone levels in the different age groups. The substantially different neurochemical effects chronic stress exerts in young and adult animals may explain the behavioral resilience to such stress young animals possess.
In auditory fear conditioning, repeated presentation of the tone in the absence of the shock leads to extinction of the acquired fear response. Both the infra limbic prefrontal cortex (IL) and the basolateral amygdala (BLA) are involved in extinction. In this study, we examine the involvement of these two regions in extinction by manipulating the gamma-aminobutyric acid (GABA)ergic system, in the Sprague-Dawley rat. We microinfused a low dose of the GABA(A) agonist muscimol into the IL or BLA. Muscimol infused to IL before extinction training, but not after either a short (five-trials) or long (15-trials) extinction training, resulted in long-term facilitation of extinction. Infusion of muscimol to the BLA following a short (five-trial) extinction session facilitated extinction at least 48-h post-drug infusion. The differences in the temporal parameters of the effects of muscimol in the IL or BLA, suggest differential involvement of these structures in long-term extinction of fear memory. We propose a facilitating role for GABA(A) neurotransmission in the IL in triggering the onset of fear extinction and its maintenance, whereas in the BLA, GABA(A) neurotransmission facilitates extinction consolidation. The involvement of GABA(A) receptors in fear extinction in the prefrontal cortex and amygdala is of particular interest, because of the role of these areas in emotional processes, and the role of the GABA(A) receptors in anxiety states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.