Miscanthus giganteus lignin was extracted by an organosolv process under reflux conditions (4 h) with varying concentrations of ethanol (65%, 75%, 85%, 95%) and 0.2 M hydrochloric acid as catalyst. The resulting lignin was extensively characterized by size exclusion chromatography (SEC), Fourier-transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR), and chemical analysis (residual sugars, Klason lignin, ash). The predominant linkage units present were β-O-4' (82-84%), resinol (6-7%), and phenylcoumaran (10-11%). The 65% ethanol solvent system gave the lowest lignin yield (14% of starting biomass) compared to 29-32% of the other systems. Increasing ethanol concentration resulted in decreasing carbohydrate content of the lignins (3.6-1.1%), a higher solubility in tetrahydrofuran (THF), a slight reduction of the molecular weight (M(w) 2.72-2.25 KDa), an increasing α-ethoxylation, and an increase in ethoxylated phenylpropenoic compounds (p-coumaric and ferulic acid), but the S/G ratio of the monolignols (0.63, GC/MS) and Klason lignin content (86-88%) were unaffected. An extraction method for these ethyl-esterified phenylpropenoids and smaller molecular weight lignin compounds was developed. The effect of reaction time (2, 4, and 8 h) was investigated for the 95% ethanol solvent system. Besides increased lignin yield (13-43%), a slight increase in M(w) (2.21-2.38 kDa) and S/G ratio (0.53-0.68, GC-MS) was observed. Consecutive extractions suggested that these changes were not from lignin modifications (e.g., condensations) but rather from extraction of lignin of different composition. The results were compared to similar solvent systems with 95% acetone and 95% dioxane.
Lignocellulosic biomass is composed of the polysaccharides cellulose and hemicellulose and the polyphenol lignin. Many current methods for analyzing the structure of lignocelluloses involve a sequential extraction of the material and subsequent analysis of the resulting fractions, which is labor-intensive and time-consuming. The work presented here assesses the dissolution of whole lignocellulosic material, focusing on biomass derived from the perennial bioenergy grass Miscanthus. The solvent dimethylsulfoxide (DMSO)-d6 containing 1-ethyl-3-methylimidazolium acetate ([Emim]OAc) was able to dissolve lignocellulosic material completely and gave high-resolution 2D heteronuclear single quantum coherence (HSQC) NMR spectra of the entire array of wall polymers. Extrapolated time-zero HSQC was applied using DMSO-d6/[Emim]OAc-d14 and enabled quantitative analysis of structural traits of lignocellulose components.
Lignin samples isolated from Miscanthus giganteus using organosolv processes were treated with vanadium catalysts that were previously developed in our group. We demonstrate that the catalyst with high β-O-4′ bond-cleaving activity in dimeric lignin models was also effective in depolymerizing actual lignin. Molecular weight-lowering was evidenced by gel permeation chromatography (GPC), whereas 2D NMR experiments showed that β-O-4′ linkages were selectively cleaved in the degradation process, just as in the case of lignin models. Monophenolic degradation products were also formed, and the individual molecules were identified and quantified by GC/MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.