Complex-oxide materials are gaining a tremendous amount of interest in the semiconductor materials and device community as they hold many useful intrinsic physical properties such as ferro/piezoelectricity, pyroelectricity, ferromagnetism, as well as magnetostriction and other properties suitable for energy storage elements. Complex-oxides can also be complemented with conventional semiconductor-based devices or used by themselves to realize state-of-the-art electronic/photonic/quantum information devices. However, because complex-oxide materials have vastly different crystalline structures and lattice constant difference compared to conventional semiconductor devices (such as Si or III-V/III-N materials), integration of complex-oxides onto conventional semiconductor platforms has been difficult. Thus, there has been constant efforts to produce freestanding single-crystalline complex-oxide thin films such that these films can be transferred and integrated together with device platforms based on other materials. This review will provide a comprehensive review on single-crystalline complex-oxide membranes technology developed thus far: how they are synthesized, methods to release them from the substrate, and their outstanding properties and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.