SUMMARY Impaired insulin-mediated suppression of hepatic glucose production (HGP) plays a major role in the pathogenesis of type 2 diabetes (T2D), yet the molecular mechanism by which this occurs remains unknown. Using a novel in vivo metabolomics approach, we show that the major mechanism by which insulin suppresses HGP is through reductions in hepatic acetyl CoA by suppression of lipolysis in white adipose tissue (WAT) leading to reductions in pyruvate carboxylase flux. This mechanism was confirmed in mice and rats with genetic ablation of insulin signaling and mice lacking adipose triglyceride lipase. Insulin’s ability to suppress hepatic acetyl CoA, PC activity, and lipolysis was lost in high-fat-fed rats, a phenomenon reversible by IL-6 neutralization and inducible by IL-6 infusion. Taken together, these data identify WAT-derived hepatic acetyl CoA as the main regulator of HGP by insulin and link it to inflammation-induced hepatic insulin resistance associated with obesity and T2D.
SUMMARY Here we report the identification and verification of a β-hydroxybutyrate-derived protein modification, lysine β-hydroxybutyrylation (Kbhb), as a new type of histone mark. Histone Kbhb marks are dramatically induced in response to elevated β-hydroxybutyrate levels in cultured cells, and in livers from mice subjected to prolonged fasting or streptozotocin-induced diabetic ketoacidosis. In total, we identified 44 histone Kbhb sites, a figure comparable to the known number of histone acetylation sites. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbhb is a mark enriched in active gene promoters, and that the increased H3K9bhb levels that occur during starvation are associated with genes up-regulated in starvation-responsive metabolic pathways. Histone β-hydroxybutyrylation thus represents a new epigenetic regulatory mark that couples metabolism to gene expression, offering a new avenue to study chromatin regulation and the diverse functions of β-hydroxybutyrate in the context of important human pathophysiological states, including diabetes, epilepsy, and neoplasia.
Roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system were proposed1,2,. Here we show that suppression of ROS diminished pro-opiomelanocortin (POMC) cell activation and promoted the activity of neuropeptide Y- (NPY)/agouti related peptide- (AgRP) neurons and feeding, whereas ROS activated POMC neurons and reduced feeding. ROS in POMC neurons were positively correlated with leptin levels in lean and ob/ob animals a relationship diminished in diet-induced obese (DIO) mice. High fat feeding resulted hypothalamic proliferation of peroxisomes and elevated PPARγ mRNA levels. Peroxisome proliferation in POMC neurons by the PPARγ agonist, rosiglitazone, decreased ROS levels and increased food intake in lean mice on high fat diet. Suppression of peroxisome proliferation in the hypothalamus by the PPAR antagonist, GW9662, increased ROS and c-fos expression in POMC neurons, reversed high fat feeding-triggered elevated NPY/AgRP and low POMC neuronal firing, and, resulted in decreased feeding of DIO mice. Finally, central administration of ROS alone increased c-fos and pStat3 expression in POMC neurons and reduced feeding of DIO animals. These observations unmask a previously unknown hypothalamic cellular event associated with peroxisomes and ROS in the central regulation of energy metabolism in states of leptin resistance.
SUMMARY A major cause of hyperglycemia in diabetic patients is inappropriate hepatic gluconeogenesis. PGC-1α is a master regulator of gluconeogenesis, and its activity is controlled by various post-translational modifications. A small portion of glucose metabolizes through the hexosamine biosynthetic pathway, which leads to O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins. Using a proteomic approach, we identified a broad variety of proteins associated with O-GlcNAc transferase (OGT), among which host cell factor C1 (HCF-1) is highly abundant. HCF-1 recruits OGT to O-GlcNAcylate PGC-1α and O-GlcNAcylation facilitates the binding of the deubiquitinase BAP1, thus protecting PGC-1α from degradation and promoting gluconeogenesis. Glucose availability modulates gluconeogenesis through the regulation of PGC-1α O-GlcNAcylation and stability by the OGT/HCF1 complex. Hepatic knockdown of OGT and HCF-1 improves glucose homeostasis in diabetic mice. These findings define the OGT/HCF-1 complex as a glucose sensor and key regulator of gluconeogenesis, shedding light on new strategies for treating diabetes.
SUMMARY Induction of beige cells causes the browning of white fat and improves energy metabolism. However, the central mechanism that controls adipose tissue browning and its physiological relevance are largely unknown. Here we demonstrate that fasting and chemical-genetic activation of orexigenic AgRP neurons in the hypothalamus suppress the browning of white fat. O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins regulates fundamental cellular processes. The levels of O-GlcNAc transferase (OGT) and O-GlcNAc modification are enriched in AgRP neurons and are elevated by fasting. Genetic ablation of OGT in AgRP neurons inhibits neuronal excitability through the voltage-dependent potassium channel, promotes white adipose tissue browning, and protects mice against diet-induced obesity and insulin resistance. These data reveal adipose tissue browning as a highly dynamic physiological process under central control, in which O-GlcNAc signaling in AgRP neurons is essential for suppressing thermogenesis to conserve energy in response to fasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.