Soybean root rot is a major disease of soybean (Glycine max [L.] Merr.) under continuous cropping, which leads to dramatic variations in the rhizosphere microflora. Soybean was sown in a different field after year zero, and continuous cropping was applied for 1 or 2 yr. The objectives were to investigate the variation in fungal populations present or inhabiting soybean roots during 3 yr of monocropping using next-generation sequencing to compare the three sets of root samples and provide a theoretical basis for the following inoculation study of the different pathogens involved in root rot disease in soybean, variation in fungal populations, and incidence of root rot. Results showed that operational taxonomic units (OTUs) of the three samples were divided into 19 phyla, 169 families, and 235 genera. Ascomycota and Basidiomycota were the dominant phyla in the continuous cropping root samples. Continuous cropping could increase the relative abundance of some fungi, namely Fusarium, Rhizoctonia, and Thelebolus, which are associated with soybean root rot for 2 and 3 yr of cropping. Continuous cropping could also increase the abundance of Gymnoascus, Chrysosporium, Ctenomyces, Aphanoascus, and Aspergillus, which are soil pathogenic fungi that can cause other plant diseases.
Continuous cropping in soybean is increasingly practiced in Heilongjiang Province, leading to substantial yield reductions and quality degradation. Arbuscular mycorrhizal fungi (AMF) are soil microorganisms that form mutualistic interactions with plant roots and can restore the plant rhizosphere microenvironment. In this study, two soybean lines (HN48 and HN66) were chosen as experimental materials, which were planted in different years of continuous cropping soybean soils and were inoculated or not with Funneliformis mosseae in potted-experiments. Ultimately, analysis of root tissue metabolome and root exudates, soil physicochemical properties, plant biomass, as well as rhizosphere soil properties in different experimental treatments, inoculated or not with F. mosseae, was performed. Experimental results showed that: (a) The disease index of soybean root rot was significantly lower in the treatment group than in the control group, and there were differences in disease index and the resistance effect of F. mosseae between the two cultivars; (b) compared with the control, the root tissue metabolome and root exudates remained unchanged, but there were changes in the relative amounts in the treatment group, and the abundant metabolites differed by soybean cultivar; (c) soybean biomass was significantly higher in the treatment group than in the control group, and the effect of F. mosseae on biomass differed with respect to the soybean cultivar; and (d) there were differences in the physiochemical indexes of soybean rhizosphere soil between the treatment and control groups, and the repairing effect of F. mosseae differed between the two cultivars. Therefore, F. mosseae can increase the biomass of continuously cropped soybean, improve the physicochemical properties of the rhizosphere soil, regulate the root metabolite profiles, and alleviate barriers to continuous cropping in potted-experiments of soybean.
Glycine max is easily infected with root rot in continuous cropping systems, which can severely affect crop yield. Arbuscular mycorrhizal fungi (AMF) can reduce the incidence of root rot and increase plant height and biomass indices. However, the molecular changes that occur during soybean symbiosis with AMF remain largely unknown. To better understand the molecular mechanism underlying soybean symbiosis with AMF, we performed transcriptomic and proteomic analyses to explore the changes in protein expression during a high-incidence period (79 days) in asymbiotic and symbiotic plants and to identify the key proteins that regulate the mechanism of soybean symbiosis with AMF. A total of 10 104 genes were identified in the CK-vs-F comparison, and 11 562 genes were significantly differentially expressed in the AF group compared with the F group. A total of 9488 proteins were identified, with 256 differentially expressed proteins (DEPs) in the CK-vs-F comparison and 651 DEPs in the F-vs-AF comparison. Key pathways and DEPs were found to be involved in processes associated with "phenylalanine metabolism", "plant hormone signal transduction", "plant-pathogen interaction", and "metabolic pathways". The expression of phenylalanine ammonia-lyase (PAL), calcium-dependent protein kinase (CPK), and other defense-related proteins was upregulated by Funneliformis mosseae, indicating that inoculation promotes the development of soybean and increases disease resistance. Our results suggest that symbiosis promotes the growth and development of soybean and increases disease resistance. This study provides new insight into the molecular basis of the mechanism by which AMF affect plant disease resistance.
Background Arbuscular mycorrhizal fungi are the most widely distributed mycorrhizal fungi, which can form mycorrhizal symbionts with plant roots and enhance plant stress resistance by regulating host metabolic activities. In this paper, the RNA sequencing and ultra-performance liquid chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS) technologies were used to study the transcriptome and metabolite profiles of the roots of continuously cropped soybeans that were infected with F. mosseae and F. oxysporum. The objective was to explore the effects of F. mosseae treatment on soybean root rot infected with F. oxysporum. Results According to the transcriptome profiles, 24,285 differentially expressed genes (DEGs) were identified, and the expression of genes encoding phenylalanine ammonia lyase (PAL), trans-cinnamate monooxygenase (CYP73A), cinnamyl-CoA reductase (CCR), chalcone isomerase (CHI) and coffee-coenzyme o-methyltransferase were upregulated after being infected with F. oxysporum; these changes were key to the induction of the soybean’s defence response. The metabolite results showed that daidzein and 7,4-dihydroxy, 6-methoxy isoflavone (glycine), which are involved in the isoflavone metabolic pathway, were upregulated after the roots were inoculated with F. mosseae. In addition, a substantial alteration in the abundance of amino acids, phenolic and terpene metabolites all led to the synthesis of defence compounds. An integrated analysis of the metabolic and transcriptomic data revealed that substantial alterations in the abundance of most of the intermediate metabolites and enzymes changed substantially under pathogen infection. These changes included the isoflavonoid biosynthesis pathway, which suggests that isoflavonoid biosynthesis plays an important role in the soybean root response. Conclusion The results showed that F. mosseae could alleviate the root rot caused by continuous cropping. The increased activity of some disease-resistant genes and disease-resistant metabolites may partly account for the ability of the plants to resist diseases. This study provides new insights into the molecular mechanism by which AMF alleviates soybean root rot, which is important in agriculture.
Soybean (Glycine max) is susceptible to root rot when subjected to continuous cropping, and this disease can seriously diminish the crop yield. Proteomics analyses can show the difference of protein expression in different treatment samples. Herein, isobaric tag for relative and absolute quantitation (iTRAQ) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were employed for proteomic analysis of continuously cropped soybean inoculated with the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae. The AMF can reduce the incidence of root rot and increase plant height, biomass index in 1, 2, and 4 year of continuous cropping. Differential expression of proteins in soybean roots was determined following 1 year of continuous cropping. A total of 131 differentially expressed proteins (DEPs) were identified in F. mosseae-treated samples, of which 49 and 82 were up- and down-regulated, respectively. The DEPs were annotated with 117 gene ontology (GO) terms, with 48 involved in biological processes, 31 linked to molecular functions, and 39 associated with cell components. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis mapped the DEPs to 113 mainly metabolic pathways including oxidative phosphorylation, glycolysis, and amino acid metabolism. Expression of glucan 1,3-beta-glucosidase, chalcone isomerase, calcium-dependent phospholipid binding and other defense-related proteins was up-regulated by F. mosseae, suggesting inoculation promotes the growth and development of soybean and increases disease resistance. The findings provide an experimental basis for further research on the molecular mechanisms of AMF in resolving problems associated with continuous soybean cropping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.