Protein biomolecules including enzymes, cagelike proteins, and specific peptides have been continuously exploited as functional biomaterials applied in catalysis, nutrient delivery, and food preservation in food-related areas. However, natural proteins usually function well in physiological conditions, not industrial conditions, or may possess undesirable physical and chemical properties. Currently, rational protein design as a valuable technology has attracted extensive attention for the rational engineering or fabrication of ideal protein biomaterials with novel properties and functionality. This article starts with the underlying knowledge of protein folding and assembly and is followed by the introduction of the principles and strategies for rational protein design. Basic strategies for rational protein engineering involving experienced protein tailoring, computational prediction, computation redesign, and de novo protein design are summarized. Then, we focus on the recent progress of rational protein engineering or design in the application of food science, and a comprehensive summary ranging from enzyme manufacturing to cagelike protein nanocarriers engineering and antimicrobial peptides preparation is given. Overall, this review highlights the importance of rational protein engineering in food biomaterial preparation which could be beneficial for food science.
This study aimed to prepare collagen glycopeptides by transglutaminase-induced glycosylation and to explore their salt taste-enhancing effects and mechanism. Collagen glycopeptides were obtained by Flavourzyme-catalyzed hydrolysis, followed by transglutaminase-induced glycosylation. The salt taste-enhancing effects of collagen glycopeptides were evaluated by sensory evaluation and an electronic tongue. LC–MS/MS and molecular docking technologies were employed to investigate the underlying mechanism responsible for the salt taste-enhancing effect. The optimal conditions were 5 h for enzymatic hydrolysis, 3 h for enzymatic glycosylation, and 1.0% (E/S, w/w) for transglutaminase. The grafting degree of collagen glycopeptides was 26.9 mg/g, and the salt taste-enhancing rate was 59.0%. LC–MS/MS analysis revealed that Gln was the glycosylation modification site. Molecular docking confirmed that collagen glycopeptides can bind to salt taste receptors epithelial sodium channel protein and transient receptor potential vanilloid 1 through hydrogen bonds and hydrophobic interaction. Overall, collagen glycopeptides have a significant salt taste-enhancing effect, which contributes to the application of collagen glycopeptides for salt reduction without compromising taste in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.