Background: There is a lack of clinical-radiological predictive models for the small (≤ 20 mm) solitary pulmonary nodules (SPNs). We aim to establish a clinical-radiological predictive model for differentiating malignant and benign small SPNs.Materials and Methods: Between January 2013 and December 2018, a retrospective cohort of 250 patients with small SPNs was used to construct the predictive model. A second retrospective cohort of 101 patients treated between January 2019 and December 2020 was used to independently test the model. The model was also compared to two other models that had previously been identified.Results: In the training group, 250 patients with small SPNs including 156 (62.4%) malignant SPNs and 94 (37.6%) benign SPNs patients were included. Multivariate logistic regression analysis indicated that older age, pleural retraction sign, CT bronchus sign, and higher CEA level were the risk factors of malignant small SPNs. The predictive model was established as: X = -10.111 + [0.129 × age (y)] + [1.214 × pleural retraction sign (present = 1; no present = 0)] + [0.985 × CT bronchus sign (present = 1; no present = 0)] + [0.21 × CEA level (ug/L)]. Our model had a significantly higher region under the receiver operating characteristic (ROC) curve (0.870; 50% CI: 0.828-0.913) than the other two models. Conclusions: We established and validated a predictive model for estimating the pre-test probability of malignant small SPNs, that can help physicians to choose and interpret the outcomes of subsequent diagnostic tests.
Background There is a lack of clinical-radiological predictive models for the small (≤ 20 mm) solitary pulmonary nodules (SPNs). We aim to establish a clinical-radiological predictive model for differentiating malignant and benign small SPNs. Materials and methods Between January 2013 and December 2018, a retrospective cohort of 250 patients with small SPNs was used to construct the predictive model. A second retrospective cohort of 101 patients treated between January 2019 and December 2020 was used to independently test the model. The model was also compared to two other models that had previously been identified. Results In the training group, 250 patients with small SPNs including 156 (62.4%) malignant SPNs and 94 (37.6%) benign SPNs patients were included. Multivariate logistic regression analysis indicated that older age, pleural retraction sign, CT bronchus sign, and higher CEA level were the risk factors of malignant small SPNs. The predictive model was established as: X = − 10.111 + [0.129 × age (y)] + [1.214 × pleural retraction sign (present = 1; no present = 0)] + [0.985 × CT bronchus sign (present = 1; no present = 0)] + [0.21 × CEA level (ug/L)]. Our model had a significantly higher region under the receiver operating characteristic (ROC) curve (0.870; 50% CI: 0.828–0.913) than the other two models. Conclusions We established and validated a predictive model for estimating the pre-test probability of malignant small SPNs, that can help physicians to choose and interpret the outcomes of subsequent diagnostic tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.