In recent decades, it has become a significant tendency for industrial manufacturers to adopt decentralization as a new manufacturing paradigm. This enables more efficient operations and facilitates the shift from mass to customized production. At the same time, advances in data analytics give more insights into the production lines, thus improving its overall productivity. The primary objective of this paper is to apply a decentralized architecture to address new challenges in industrial analytics. The main contributions of this work are therefore two-fold: (1) an assessment of the microservices' feasibility in industrial environments, and (2) a microservicesbased architecture for industrial data analytics. Also, a prototype has been developed, analyzed, and evaluated, to provide further practical insights. Initial evaluation results of this prototype underpin the adoption of microservices in industrial analytics with less than 20ms end-to-end processing latency for predicting movement paths for 100 autonomous robots on a commodity hardware server. However, it also identifies several drawbacks of the approach, which is, among others, the complexity in structure, leading to higher resource consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.