It is well known that to increase rotational velocity is one of the effective measures to increase total pressure ratio. With increasing velocity, under the condition of transonic flow, the obvious effect of maximum camber location on aerodynamics performance of compressor blades especially in the supersonics zone can be found. In order to reduce the blade losses and to improve the blade design methodology it is necessary to study this complex flow mechanism. This paper describes only the influence of relative maximum camber location on aerodynamics performance, mainly adiabatic efficiency. As an example an axial fan was designed and calculated by the methodologies developed at the Institute of Engineering Thermophysics, Chinese Academy of Sciences.
Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.