This study was conducted to evaluate the effect of plant polyphenols (PP) on antioxidant activity in weaned piglets. First, a uniform design, one optimising an experimental technique that can rationally arrange the concentrations of mixture components, was used to obtain the best PP mixture of apple, grape seed, green tea and olive leaf polyphenols based on in vitro antioxidant capacity and inhibitory action on bacterial growth. Second, the optimised PP mixture was tested in vivo with an efficacy trial on piglets. The optimal effects of the mix were observed in vitro when apple, grape seed, green tea, olive leaf polyphenols and a carrier (silicon dioxide) accounted for 16.5, 27.5, 30, 2.5 and 23.5%, respectively, of the mixture. Forty-eight weaned piglets were randomly allocated to two dietary treatments (6 replicates of 4 piglets each per treatment) and fed a control diet (CTR) or CTR supplemented with 0.1% of the optimised PP mixture. Dietary PP did not affect growth performance compared to the CTR group. Plasma total protein, urea nitrogen and lysozyme content were not affected by dietary treatment. No differences of E. coli or Clostridia counts in the faeces and caecum content between the CTR and PP groups were observed. A reduced malondialdehyde concentration in the PP group was observed on day 21 compared to the CTR group (P=0.02). In conclusion, the prepared PP mixture has the potential to improve plasma antioxidant activity.
A 3×3 factorial arrangement with dietary non-phytate phosphorus (NPP) levels and phytase sources (3-and 6-phytase) was conducted to evaluate the effects of NPP levels, phytase sources and their possible interactions on growth performance, serum biochemical and tibia parameters of broiler chickens from hatch to 42 days of age. A total of 540 1-day-old Arbor Acres male broiler chicks were randomly allocated into nine dietary treatments, each containing 5 replicates pens with 12 birds per pen. Interaction was statistically significant in the performance till day 21 of trial, supplementation of low NPP diet decreased body weight (BW) (P<0.001), depressed average daily gain (ADG) (P<0.001) and deteriorated average daily feed intake (ADFI) (P<0.001) over day 42. During the 8-to-21-day period, even if interaction between NPP levels and phytase sources was significant (P<0.01), BW, ADG and ADFI always increased due to dietary supplementation of phytase, with source not differing. Dietary high NPP enhanced serum calcium and P concentrations on day 21 and 42 (linear contrast, P<0.01), while decreased alkaline phosphatase (AKP) activity on day 42 (linear contrast, P<0.001), and interaction was not significant. Both dietary sources of phytase decreased serum AKP activities on day 42 (P<0.001), and urea nitrogen content on day 21 (P<0.01) and 42 (P<0.001). Both phytase improved ash percentage on day 21 and P content in tibia at 21 and 42 days of age (P<0.001). The results confirmed that dietary supplementation of phytase may enhance P availability during the 8-to-21-day period. Nevertheless, no difference between the two phytase sources was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.