Cancer is a disease characterized by defects in growth control, and tumor cells often display abnormal patterns of cellular differentiation. The combination of recombinant human fibroblast interferon and the antileukemic agent mezerein corrects these abnormalities in cultured human melanoma cells resulting in irreversible growth arrest and terminal differentiation. Subtraction hybridization identifies a melanoma differentiation associated gene (mda-7) with elevated expression in growth arrested and terminally differentiated human melanoma cells. Colony formation decreases when mda-7 is transfected into human tumor cells of diverse origin and with multiple genetic defects. In contrast, the effects of mda-7 on growth and colony formation in transient transfection assays with normal cells, including human mammary epithelial, human skin fibroblast, and rat embryo fibroblast, is quantitatively less than that found with cancer cells. Tumor cells expressing elevated mda-7 display suppression in monolayer growth and anchorage independence. Infection with a recombinant type 5 adenovirus expressing antisense mda-7 eliminates mda-7 suppression of the in vitro growth and transformed phenotype. The ability of mda-7 to suppress growth in cancer cells not expressing or containing defects in both the retinoblastoma (RB) and p53 genes indicates a lack of involvement of these critical tumor suppressor elements in mediating mda-7-induced growth inhibition. The lack of protein homology of mda-7 with previously described growth suppressing genes and the differential effect of this gene on normal versus cancer cells suggests that mda-7 may represent a new class of cancer growth suppressing genes with antitumor activity.Cancer is a complex multifactor and multistep process involving the coordinated expression and suppression of genes functioning as positive and negative regulators of oncogenesis (1-5). Direct cloning strategies, based on transfer of a dominant transforming or tumorigenic phenotype, have identified positive acting oncogenes (6-9). In contrast, the detection and cloning of genes that suppress the cancer phenotype have proven more difficult and elusive (10-15). A direct approach for isolating genes directly involved in regulating growth and differentiation involves subtraction hybridization between cDNA libraries constructed from actively growing cancer cells and cDNA libraries from cancer cells induced to lose proliferative capacity irreversibly and terminally differentiate (13,14). This experimental strategy has been applied to human melanoma cells, induced to terminally differentiate by treatment with recombinant human interferon 3 (IFN-4) and mezerein (MEZ), resulting in the cloning of novel melanoma differentiation-associated (mda) genes not previously described in DNA data bases (13,14). A direct role for specific mda genes in mediating growth and cell cycle control is apparent by the identification and cloning of mda-6 (13-16), which is identical to the ubiquitous inhibitor of cyclindependent kinases p21 (...
Abnormalities in cellular di erentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant ®broblast interferon (IFN-b) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell di erentiation. Subtraction hybridization identi®ed melanoma di erentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful e ects occur when mda-7 is expressed in normal epithelial or ®broblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Humda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-b plus MEZ. Mda-7 expression is also induced during megakaryocyte di erentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-b+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-b+MEZ and induction of endogenous mda-7 mRNA by combination treatment did not result in signi®cant intracellular MDA-7 protein. Radiation hybrid mapping assigned the mda-7 gene to human chromosome 1q, at 1q 32.2 to 1q41, an area containing a cluster of genes associated with the IL-10 family of cytokines. Mda-7 represents a di erentiation, growth and apoptosis associated gene with potential utility for the gene-based therapy of diverse human cancers. Oncogene (2001) 20, 7051 ± 7063.
Human melanoma cells growth-arrest irreversibly and terminally differentiate on treatment with a combination of fibroblast interferon and the protein kinase C activator mezerein. This experimental protocol also results in a loss of tumorigenic potential and profound changes in gene expression. Various cloning and cDNA microarray strategies are being used to determine the complete spectrum of gene expression changes underlying these alterations in human melanoma cells. An efficient approach, Rapid Subtraction Hybridization (RaSH), has been developed that is permitting the identification of genes of potential relevance to cancer growth control and terminal cell differentiation. RaSH cDNA libraries are prepared from double-stranded cDNAs that are enzymatically digested into small fragments, ligated to adapters, and PCR amplified followed by incubation of tester and driver PCR fragments. This subtraction hybridization scheme is technically simple and results in the identification of a high proportion of differentially expressed sequences, including known genes and those not described in current DNA databases. The RaSH approach represents an efficient methodology for identifying and cloning genes displaying differential expression that associate with and potentially regulate complex biological processes.cDNA cloning ͉ reverse Northern blotting ͉ melanoma differentiation associated genes ͉ Northern blotting
Cancer is a progressive disease culminating in acquisition of metastatic potential by a subset of evolving tumor cells. Generation of an adequate blood supply in tumors by production of new blood vessels, angiogenesis, is a defining element in this process. Although extensively investigated, the precise molecular events underlying tumor development, cancer progression, and angiogenesis remain unclear. Subtraction hybridization identified a genetic element, progression elevated gene-3 ( Taken together these data demonstrate that PEG-3 is a positive regulator of cancer aggressiveness, a process regulated by augmented VEGF production. These studies also support an association between expression of a single nontransforming cancer progression-inducing gene, PEG-3, and the processes of cancer aggressiveness and angiogenesis. In these contexts, PEG-3 may represent an important target molecule for developing cancer therapeutics and inhibitors of angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.