Metabolic syndromes caused obesity has long been recognized as a risk of health. Celery and celery extracts have various medicinal properties, such as anti-diabetes, anti-inflammatory and blood glucose and...
In the process of minimizing stress in sputtered Molybdenum (Mo) films for fabricating transition-edge sensor (TES) devices, we have investigated correlations between the stress and film deposition parameters. At a fixed sputtering power, the tensile stress of our film samples decreases toward both low and high ends of Ar pressure, suggestive of two physical mechanisms at work: an “atomic peening” effect at low Ar pressure and the development of voids at high Ar pressure. We have also carried out correlative studies of the stress and electrical properties (including superconducting critical temperature and residual resistivity) of the film samples, and found that the results are complex. We have made extensive comparisons with the published results, and attempted to explain the discrepancies in terms of film deposition techniques, sample preparation and treatment, and dynamical ranges of measurements. It is fairly clear that the microscopic properties, including porosity and disorder, of Mo films may have significant impact on the correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.