Dabieshan cattle are a typical breed of southern Chinese cattle that have the characteristics of muscularity, excellent meat quality and tolerance to temperature and humidity. Based on 148 whole-genome data, our analysis disclosed the ancestry components of Dabieshan cattle with Chinese indicine (0.857) and East Asian taurine (0.139). The Dabieshan genome demonstrated a higher genomic diversity compared with the other eight populations, supported by the observed nucleotide diversity, linkage disequilibrium decay and runs of homozygosity. The candidate genes were detected by a selective sweep, which might relate to the fertility (GPX5, GPX6), feed efficiency (SLC2A5), immune response (IGLL1, BOLA-DQA2, BOLA-DQB), heat resistance (DnaJC1, DnaJC13, HSPA4), fat deposition (MLLT10) and the coat color (ASIP). We also identified the “East Asian taurine-like” segments in Dabieshan cattle, which might contribute to meat quality traits. The results revealed by the unique and valuable genomic data can build a foundation for the genetic improvement and conservation of genetic resources for indigenous cattle breeds.
Dabieshan cattle (DBSC) are a valuable genetic resource for indigenous cattle breeds in China. It is a small to medium-sized breed with slower growth, but with good meat quality and fat deposition. Genetic markers could be used for the estimation of population genetic structure and genetic parameters. In this work, we genotyped the DBSC breeding population (n = 235) with the GeneSeek Genomic Profiler (GGP) 100 k density genomic chip. Genotype data of 222 individuals and 81,579 SNPs were retained after quality control. The average minor allele frequency (MAF) was 0.20 and the average linkage disequilibrium (LD) level (r2) was 0.67 at a distance of 0–50 Kb. The estimated relationship coefficient and effective population size (Ne) were 0.023 and 86 for the current generation. In addition, we used genotype data to estimate the genetic parameters of the population’s phenotypic traits. Among them, height at hip cross (HHC) and shin circumference (SC) were rather high heritability traits, with heritability of 0.41 and 0.54, respectively. The results reflected the current cattle population’s extent of inbreeding and history. Through the principal breeding parameters, genomic breeding would significantly improve the genetic progress of breeding.
As an important genotyping platform, SNP chips are essential for implementing genomic selection. In this article, we introduced the development of a liquid SNP chip panel for dairy goats. This panel contains 54,188 SNPs based on genotyping by targeted sequencing (GBTS) technology. The source of SNPs in the panel were from the whole-genome resequencing of 110 dairy goats from three European and two Chinese indigenous dairy goat breeds. The performance of this liquid SNP chip panel was evaluated by genotyping 200 additional goats. Fifteen of them were randomly selected for whole-genome resequencing. The average capture ratio of the panel design loci was 98.41%, and the genotype concordance with resequencing reached 98.02%. We further used this chip panel to conduct genome-wide association studies (GWAS) to detect genetic loci that affect coat color in dairy goats. A single significant association signal for hair color was found on chromosome 8 at 31.52–35.02 Mb. The TYRP1 gene, which is associated with coat color in goats, was identified to be located at this genomic region (chromosome 8: 31,500,048-31,519,064). The emergence of high-precision and low-cost liquid microarrays will improve the analysis of genomics and breeding efficiency of dairy goats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.