The small nucleolar RNA (snoRNA) is a type of small non-coding RNA widely distributed in the nucleoli of eukaryotic cells, promoting cancer development. The aim of this study was to assess box C/D snoRNA 89 (SNORD89) dysregulations in endometrial cancer. According to the TCGA database as well as the International Federation of Gynecology and Obstetrics (FIGO), higher SNORD89 expression is found in endometrial cancer tissues. In addition, the SNORD89 expression level was higher in endometrial carcinoma with lymph node metastasis than in endometrial carcinoma without lymph node metastasis. By interacting with the conservative chaperone protein methylase fibrillarin (Fbl), SNORD89 inhibits the translation process of the Bim gene, leading to a decrease in Bim protein. Cancer-promoting effect of SNORD89 can be reversed by Fbl knockdown or Bim overexpressing. What’s more, ASO-mediated silencing of SNORD89 could inhibit endometrial cancer cell proliferation and migration ability. Taken together, SNORD89 can modify Bim through 2′-O-methylation and affect downstream signaling pathways to promote endometrial cancer occurrence and development. The role of methylation modification in the prevention and treatment of endometrial cancer provides a new understanding and SNORD89 may be a new diagnostic and therapeutic target for endometrial cancer.
The present study demonstrated for the first time that SNORA70E, which belongs to box H/ACA small nucleolar noncoding RNAs (snoRNAs) who could bind and induce pseudouridylation of RNAs, was significantly elevated in ovarian cancer tissues and was an unfavourable prognostic factor of ovarian cancer. The over‐expression of SNORA70E showed increased cell proliferation, invasion and migration in vitro and induced tumour growth in vivo. Further research found that SNORA70E regulates RAS‐Related Protein 1B (
RAP1B
) mRNA through pseudouracil modification by combing with the pyrimidine synthase Dyskerin Pseudouridine Synthase 1 (DKC1) and increase
RAP1B
protein level. What's more, the silencing of
DKC1
/
RAP1B
in SNORA70E overexpression cells both inhibited cell proliferation, migration and invasion through reducing β‐catenin, PI3K, AKT1, mTOR, and MMP9 protein levels. Besides, RNA‐Seq results revealed that SNORA70E regulates the alternative splicing of PARP‐1 binding protein (
PARPBP
), leading to the 4th exon‐skipping in
PARPBP‐88
, forming a new transcript
PARPBP‐15
, which promoted cell invasion, migration and proliferation. Finally, ASO‐mediated silencing of SNORA70E could inhibit ovarian cancer cell proliferation, invasion, migration ability in vitro and inhibit tumorigenicity in vivo. In conclusion, SNORA70E promotes the occurrence and development of ovarian cancer through pseudouridylation modification of
RAP1B
and alternative splicing of
PARPBP
. Our results demonstrated that SNORA70E may be a new diagnostic and therapeutic target for ovarian cancer.
Adenosine-to-inosine (A-to-I) editing, a key RNA modification widely found in eukaryotes, is catalyzed by adenosine deaminases acting on RNA (ADARs). Such RNA editing destabilizes endogenous dsRNAs, which are subsequently recognized by the sensors of innate immune and other proteins as autologous dsRNAs. This prevents the activation of innate immunity and type I interferon-mediated responses, thereby reducing the downstream cell death induced by the activation of the innate immune sensing system. ADARs-mediated editing can also occur in mRNAs and non-coding RNAs (ncRNAs) in different species. In mRNAs, A-to-I editing may lead to missense mutations and the selective splicing of coding regions. Meanwhile, in ncRNAs, A-to-I editing may affect targeting and disrupt ncRNAs maturation, leading to anomalous cell proliferation, invasion, and responses to immunotherapy. This review highlights the biological functions of A-to-I editing, its role in regulating innate immunity and cell death, and its potential molecular significance in tumorigenesis and cancer targeted therapy and immunotherapy.
Poa pratensis L. (Poaceae) is a hardy, persistent, attractive forage and turf grass adapted to a wide range of soils and climate. In this study, we release and detail the complete chloroplast genome sequences of P. pratensis. The whole chloroplast genome was 135,649 bp in length and comprised 131 genes, including 85 protein-coding genes, 38 tRNA genes, 8 rRNA genes. The P. pratensis chloroplast genome had a GC content of 38.3%. The result of phylogenetic analysis showed that P. pratensis was closely related to P. pratensis cv. Qinghai and P. poophagorum. This study would provide useful genetic information for the protection of P. pratensis and other related species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.