The physical phenomena involved during three-dimensional axisymmetric laser-induced plasma expansion into background gas are numerically studied. For this purpose, a multispecies hydrodynamic model is developed which considers the effects of mass and ambipolar diffusions, thermal conduction, viscosity, and nonequilibrium conditions for ionization. This model is applied to describe quantitatively the Si plasma plume expansion into Ar or He gases. It is shown that the mechanism of plasma expansion depends critically on both the pressure and mass of the background gas. The shock front expansion is found to be strongly correlated with ion dynamics. A pronounced difference between heavy-particle and electron temperatures indicates a persistent lack of equilibrium between the heavy particle and the electron in the plasma plume expansion. The Si atoms of the rarefied plume are essentially driven by the backward-moving background gas as a result of a mass diffusion process. It is also noted that the diffusion processes are only important in the last expansion stage, and are less significant in the first stage. Therefore, it is shown that a computation which does not include diffusion effects (Euler equations) can adequately describe only the earliest stage of plasma expansion into background gas. The ability of the Navier-Stokes hydrodynamic multispecies model to predict the key role of the background gas type (Ar, He) and pressure is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.