Properly piled up: Single‐layer 2D semiconducting nanomaterials of MoS2, WS2, TiS2, TaS2, ZrS2, and graphene were fabricated through an electrochemical lithiation process (see picture). The production of single‐layer MoS2 was achieved in 92 % yield. A single‐layer MoS2‐based thin‐film transistor was fabricated, which was used for sensing NO at a detection limit of 190 ppt.
Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have recently attracted tremendous interest as potential valleytronic and nanoelectronic materials, in addition to being well-known as excellent lubricants in the bulk. The interlayer van der Waals (vdW) coupling and low-frequency phonon modes and how they evolve with the number of layers are important for both the mechanical and the electrical properties of 2D TMDs. Here we uncover the ultralow frequency interlayer breathing and shear modes in few-layer MoS2 and WSe2, prototypical layered TMDs, using both Raman spectroscopy and first principles calculations. Remarkably, the frequencies of these modes can be perfectly described using a simple linear chain model with only nearest-neighbor interactions. We show that the derived in-plane (shear) and out-of-plane (breathing) force constants from experiment remain the same from two-layer 2D crystals to the bulk materials, suggesting that the nanoscale interlayer frictional characteristics of these excellent lubricants should be independent of the number of layers.
Although great progress has been achieved in the study of graphene, the small current ON/OFF ratio in graphene-based field-effect transistors (FETs) limits its application in the fields of conventional transistors or logic circuits for low-power electronic switching. Recently, layered transition metal dichalcogenide (TMD) materials, especially MoS2, have attracted increasing attention. In contrast to its bulk material with an indirect band gap, a single-layer (1L) MoS2 nanosheet is a semiconductor with a direct band gap of ~1.8 eV, which makes it a promising candidate for optoelectronic applications due to the enhancement of photoluminescence and high current ON/OFF ratio. Compared with TMD nanosheets prepared by chemical vapor deposition and liquid exfoliation, mechanically exfoliated ones possess pristine, clean, and high-quality structures, which are suitable for the fundamental study and potential applications based on their intrinsic thickness-dependent properties. In this Account, we summarize our recent research on the preparation, characterization, and applications of 1L and multilayer MoS2 and WSe2 nanosheets produced by mechanical exfoliation. During the preparation of nanosheets, we proposed a simple optical identification method to distinguish 1L and multilayer MoS2 and WSe2 nanosheets on a Si substrate coated with 90 and 300 nm SiO2. In addition, we used Raman spectroscopy to characterize mechanically exfoliated 1L and multilayer WSe2 nanosheets. For the first time, a new Raman peak at 308 cm(-1) was observed in the spectra of WSe2 nanosheets except for the 1L WSe2 nanosheet. Importantly, we found that the 1L WSe2 nanosheet is very sensitive to the laser power during characterization. The high power laser-induced local oxidation of WSe2 nanosheets and single crystals was monitored by Raman spectroscopy and atomic force microscopy (AFM). Hexagonal and monoclinic structured WO3 thin films were obtained from the local oxidization of single- to triple-layer (1L-3L) and quadruple- to quintuple-layer (4L-5L) WSe2 nanosheets, respectively. Then, we present Raman characterization of shear and breathing modes of 1L and multilayer MoS2 and WSe2 nanosheets in the low frequency range (<50 cm(-1)), which can be used to accurately identify the layer number of nanosheets. Magnetic force microscopy was used to characterize 1L and multilayer MoS2 nanosheets, and thickness-dependent magnetic response was found. In the last part, we briefly introduce the applications of 1L and multilayer MoS2 nanosheets in the fields of gas sensors and phototransistors.
By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS(2) thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS(2) channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS(2) thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times. The successful incorporation of a MoS(2) thin-film into the electronic sensor promises its potential application in various electronic devices.
Single- and few-layer transition-metal dichalcogenide nanosheets, such as WSe₂ , TaS₂, and TaSe₂, are prepared by mechanical exfoliation. A Raman microscope is employed to characterize the single-layer (1L) to quinary-layer (5L) WSe₂ nanosheets and WSe₂ single crystals with a laser excitation power ranging from 20 μW to 5.1 mW. Typical first-order together with some second-order and combinational Raman modes are observed. A new peak at around 308 cm⁻¹ is observed in WSe₂ except for the 1L WSe₂, which might arise from interlayer interactions. Red shifting of the A(1g) mode and the Raman peak around 308 cm⁻¹ is observed from 1L to 5L WSe₂. Interestingly, hexagonal- and monoclinic-structured WO₃ thin films are obtained during the local oxidation of thinner (1L-3L) and thicker (4L and 5L) WSe₂ nanosheets, while laser-burned holes are found during the local oxidation of the WSe₂ single crystal. In addition, the characterization of TaS₂ and TaSe₂ thin layers is also conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.