Gastric cancer (GC) is a malignancy with few effective treatment options after metastasis occurs. Quercetin (Qu) intake has been associated with reduced incidence and slow development of GC, probably due to its anti-proliferative and apoptotic effects, but it is unclear whether Qu can inhibit the metastatic activity. The urokinase plasminogen activator (uPA)/uPA receptor (uPAR) system plays an important role in cancer metastasis. In this study, we measured both uPA activity and uPAR expression in GC and pericarcinous tissues, and we investigated the correlation between uPAR expression and the migratory and invasive activities of various GC cell lines. GC BGC823 and AGS cells were subjected to treatment with 10 μM Qu for 72 hours and uPAR knockdown, alone or in combination, before evaluating cell metastasis. The results showed that uPA activity and uPAR expression were higher in GC tissues than in pericarcinous tissues. Migratory and invasive activities of GC cell lines positively correlated with uPAR expression. Qu treatment decreased BGC823 and AGS cell migration and invasion, accompanied by reduced uPA and uPAR protein expression. Both Qu treatment and uPAR knockdown decreased matrix metalloproteinase-2 and -9 activity and blocked Pak1-Limk1-cofilin signaling. Qu treatment was associated with inhibition of NF-κb, PKC-δ, and ERK1/2, and with AMPKα activation. Specific inhibitors of NF-κb, PKC, and ERK1/2, and an AMPKα activator suppressed uPA and uPAR expression in GC cells. Collectively, Qu showed an antimetastatic effect on GC cells via the interruption of uPA/uPAR function and modulation of NF-κb, PKC-δ, ERK1/2, and AMPKα. This suggests that Qu is a promising agent against GC metastasis.
BackgroundVarious plant extracts have been suggested to be used as auxiliary agents in chemotherapy considering their anti-proliferative effect on cancer cells. However, recent reports reveal that plant extracts may function as inducers of autophagy of cancer cells. In general, autophagy confers survival advantage for cells responding to stress conditions, thus representing an important mechanism for chemo-resistance. This study was aimed to investigate the effectiveness of combined use of Salidroside (Sal, a phenylpropanoid glycosides from Rhodiola rosea L) with anti-tumor agents against colorectal cancer (CRC) cells, and moreover to evaluate the potential role of autophagy in the combined therapy.MethodsCRC cells, HCT-116, were incubated with Sal alone or in combination with conventional chemotherapy agents including oxaliplatin (OXA), 5-fluorouracil (5-FU) and Doxorubicin (ADM). Cell proliferative characteristics were evaluated by cell viability and apoptosis rate. The protein expression was assessed by Immunofluorescent and Western blot assays.ResultsSal, alone or in combination with anti-tumor agents, increased expression of autophagic biomarkers, including LC3B and Becline-1, suggesting an autophagy induction. Except for the up-regulation of p-AMPK, p-mTOR, p-NF-κB (p65), TGF-β, p-JAK2 and p-STAT3 were down-regulated by Sal. Because autophagy is positively correlated with the activation of AMPK/mTOR, NF-κB, TGFβ1 and JAK2/STAT3 cascades, the autophagy induced by Sal may associate with AMPK activation. Indeed, blockage of AMPK signaling via Compound C or AMPK knockdown inhibited the autophagy. The blockage of AMPK signaling or a direct inhibition of autophagy via 3-MA increased effectiveness of combined use of Sal with anti-tumor agents against CRC.ConclusionsInhibition of autophagy enhances synergistic effects of Sal and anti-tumor agents against colorectal cancer. This study provides experimental evidence and theoretical reference for improvement of a novel chemotherapy treatment protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.