Objective: This study aimed to develop and validate a simple-to-use nomogram for early hepatocellular carcinoma (HCC) patients undergoing a preoperative consultation and doctors conducting a postoperative evaluation. Methods: A total of 2,225 HCC patients confirmed with stage I or II were selected from the Surveillance, Epidemiology, and End Results database between January 2010 and December 2015. The patients were randomly divided into two groups: a training group ( n = 1,557) and a validation group ( n = 668). Univariate and multivariate hazards regression analyses were used to identify independent prognostic factors. The Akaike information criterion (AIC) was used to select variables for the nomogram. The performance of the nomogram was validated concerning its ability of discrimination and calibration and its clinical utility. Results: Age, alpha-fetoprotein (AFP), race, the degree of differentiation, and therapy method were significantly associated with the prognosis of early HCC patients. Based on the AIC results, five variables (age, race, AFP, degree of differentiation, and therapy method) were incorporated into the nomogram. The concordance indexes of the simple nomogram in the training and validation groups were 0.707 (95% CI: 0.683–0.731) and 0.733 (95% CI: 0.699–0.767), respectively. The areas under the receiver operating characteristic (ROC) curve of the nomogram in the training and validation groups were 0.744 and 0.764, respectively, for predicting 3-year survival, and 0.786 and 0.794, respectively, for predicting 5-year survival. Calibration plots showed good consistency between the predictions of the nomogram and the actual observations in both the training and validation groups. Decision curve analysis (DCA) showed that the simple nomogram was clinically useful, and the overall survival significantly differed between low- and high-risk groups divided by the median score of the nomogram in the training group ( P < 0.001). Conclusion: A simple-to-use nomogram based on a large population-based study is developed and validated, which is a conventional tool for doctors to facilitate the individual consultation of preoperative patients and the postoperative personalized evaluation.
Despite the widespread use of endoscopy and conventional tumor biomarkers, gastric cancer (GC) remains one of the most frequent causes of cancer-related deaths worldwide due to its late diagnosis and poor response to treatment. Valuable and practical biomarkers are urgently needed to screen patients with a high risk of GC that can complement endoscopic diagnosis. Such biomarkers will enable the efficient prediction of therapeutic response and prognosis of GC patients and favor the establishment of an effective treatment strategy for each and every patient. MicroRNAs (miRNAs) are a class of small non-coding RNA sequences that play important roles in modulating key biological processes by regulating the expression of target genes. Expectedly, miRNAs are abnormally expressed within the tumor tissue and in associated biological fluids of GC patients including their blood, gastric juice, and urine. Accumulating evidence indicates that miRNAs are potential biomarkers with multiple diagnostic functions for GC. Here, we review recent advances and challenges in using miRNAs, particularly biofluid miRNAs, as GC biomarkers with potential clinical applications including diagnosing, clinically staging, and predicting malignant behaviors, therapy response, recurrence after surgery and survival time.
Background The aim of this study was to establish and validate an easy-to-use nomogram to predict portal vein thrombosis (PVT) in patients with cirrhosis after splenectomy and to test its predictive ability. Material/Methods This retrospective study included 315 patients with cirrhosis who underwent splenectomy at 2 high-volume medical centers. The least absolute shrinkage and selection operator (LASSO) regression method was used to select the predictors in the training cohort, and multivariable logistic regression analysis was performed to establish the predictive nomogram model. We determined the prediction value of the nomogram by the area under the receiver operating characteristic curve (AUROC), the calibration curve, and decision curve analysis. Finally, the applicability of the nomogram was internally and independently validated. Results The predictors of PVT included portal vein diameter, splenic vein diameter, body mass index, and platelet count. Based on the clinical and radiomic models, the nomogram had good predictive efficiency for predicting PVT in patients with cirrhosis after splenectomy, with an AUROC of 0.887 (0.856 in internal validation and 0.796 in independent validation). The decision curve analysis revealed that the nomogram had good clinical application value. Conclusions We successfully developed an easy-to-use nomogram to predict the probability of PVT in patients with cirrhosis after splenectomy. The nomogram can help clinicians make timely, individualized clinical decisions for PVT in patients with cirrhosis after splenectomy.
Purpose: The aims of this study were to develop and validate a novel nomogram to predict thromboembolism (TE) in gastric cancer (GC) patients receiving chemotherapy and to test its predictive ability.Methods: This retrospective study included 544 GC patients who received chemotherapy as the initial treatment at two medical centers. Among the 544 GC patients who received chemotherapy, 275 and 137 patients in the First Affiliated Hospital of Nanchang University from January 2014 to March 2019 were enrolled in the training cohort and the validation cohort, respectively. A total of 132 patients in the Beilun branch of the First Affiliated Hospital of Zhejiang University from January 2015 to August 2019 were enrolled in external validation cohorts. The nomogram was based on parameters determined by univariate and multivariate logistic analyses. The prediction performance of the nomogram was measured by the area under the receiver operating characteristic curve (AUROC), the calibration curve, and decision curve analysis (DCA). The applicability of the nomogram was internally and independently validated.Results: The predictors included the Eastern Cooperative Oncology Group Performance Status (ECOG), presence of an active cancer (AC), central venous catheter (CVC), and D-dimer levels. These risk factors are shown on the nomogram and verified. The nomogram demonstrated good discrimination and fine calibration with an AUROC of 0.875 (0.832 in internal validation and 0.807 in independent validation). The DCA revealed that the nomogram had a high clinical application value.Conclusions: We propose the nomogram for predicting TE in patients with GC receiving chemotherapy, which can help in making timely personalized clinical decisions for different risk populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.