Background: Repetitive transcranial magnetic stimulation (rTMS) is thought to be effective in alleviating cognitive symptoms in patients with amnestic mild cognitive impairment (aMCI), but the mechanisms related to network modification are poorly understood.Objective: Here we tested rTMS efficacy and explored the effect of rTMS-induced changes in the default mode network (DMN) and their predictive value for treatment response.
A major hallmark of Parkinson’s disease (PD) is the degeneration of dopaminergic neurons in the substantia nigra, and the causative mechanism is thought to be the activation of programmed neuronal death. Necroptosis is a regulated process of cell death triggered by RIPK1. Although the pathophysiology of PD has been studied extensively, the cellular mechanism underlying dopaminergic neuron death remains unclear. In this study, we detected a specific miRNA, miR-425, in response to MPTP toxicity and dopaminergic degeneration. In MPTP-treated mice, we observed necroptosis activation and miR-425 deficiency in the substantia nigra, which is correlated with dopaminergic neuron loss. This miRNA targeted RIPK1 transcripts and promoted the phosphorylation of MLKL and necroptosis. Similarly, in the brains of PD patients, miR-425 deficiency and necroptosis activation were also confirmed in dopaminergic neuron. Furthermore, we found that genetic knockdown of miR-425 aggravated MPTP-induced motor deficits and dopaminergic neurodegeneration via early upregulation of necroptotic genes. Intracerebral miR-425 mimics (AgomiR-425) treatment attenuated necroptosis activation and dopaminergic neuron loss, and improved locomotor behaviors. In conclusion, our study suggests that miR-425 deficiency triggers necroptosis of dopaminergic neurons, and targeting miR-425 in MPTP-treated mice restored dysfunctional dopaminergic neurodegeneration and ameliorated behavioral deficits. These findings identify brain delivery of miR-425 as a potential therapeutic approach for the treatment of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.