Given the present high incidence of melanoma and skin cancer, interest in potential drugs of plant origin has increased significantly. Pentacyclic lupane-type triterpenes are widely distributed in plants, offering numerous pharmacological benefits. Betulin is an important compound in the bark of Betula pendula Roth and has important therapeutic properties, including antitumor activities. Its biological effect is limited by its poor water solubility, which can be improved by cyclodextrin complexation. The best results have been obtained by using a novel cyclodextrin derivative, octakis-[6-deoxy-6-(2-sulfanyl ethanesulfonate)]-γ-CD. The complexes between betulin and the previously mentioned cyclodextrin were analyzed by scanning electron microscopy (SEM)and differential scanning calorimetry (DSC) and pharmacologically evaluated in vitro (MTT and immunocytochemistry tests) and in vivo in C57BL/6J mice. The solubility of betulin is improved by cyclodextrin complexation, which creates a stable complex that improves the in vitro and in vivo properties of the active compound.
Four fanlike organic compounds, 1-ethoxybenzene (EOB), 1-butoxybenzene (BOB), 1-dodecyloxybenzene (DOB), and 1-(dodecyloxy)-2-methoxybenzene (DOMB), were chosen as guests, and beta-cyclodextrin (beta-CD) and its two derivatives, mono(2-O-2-methyl)-beta-CD and mono(2-O-2-hydroxy-propyl)-beta-CD, were chosen as hosts. Energy changes involved in host-guest inclusion processes were clearly obtained by applying semiempirical PM3 calculations. According to this, probable structures of the host-guest inclusion complexes were proposed. The inclusion systems in aqueous solution were investigated by UV-vis spectroscopy and nuclear magnetic resonance ((1)H NMR) titration, and the formation constants (K) of the inclusion complexes were determined using the Benesi-Hildebrand equation. Moreover, two solid inclusion complexes of beta-CD with EOB and DOB were prepared and characterized by Fourier transform infrared spectra, X-ray powder diffraction, (1)H NMR, electrospray ionization mass spectrometry, and thermogravimetric analyses. Results showed that the host-guest stoichiometries in the inclusion complexes were all 1:1 both in solid state and in aqueous solution. As for the same host, the values of K increased in the order EOB < BOB < DOB, in strong association with the fan handle in the fanlike molecules; that is to say, the K values increased with increasing carbon chain length of substituent on benzene ring. In addition, the K values of DOMB complexes were larger than those of DOB complexes for the same CD, indicating that the introduction of an extra o-methoxyl group on DOB further stabilized the CD inclusion complexes. The decomposition activation energies of EOB-beta-CD and DOB-beta-CD were very similar but significantly larger than that of free beta-CD.
A series of hydrophilic per-6-thio-6-deoxy-γ-cyclodextrins (CDs) were synthesized from per-6-iodo-6-deoxy-γ-CD. These new hosts are able to solubilize polycyclic aromatic guests in aqueous solution to much higher extents than native CDs. Phase-solubility diagrams were mostly linear in accordance with both 1:1 and 1:2 CD-guest complexes in aqueous solution. The stoichiometry of the inclusion complexes was further investigated by fluorescence spectroscopy, which revealed very pronounced Stokes shifts typical for 1:2 complexes. This finding was further consolidated by quantum mechanical calculations of dimer formation of the guests and space-filling considerations by using the cross-sectional areas of the CDs and guests. The calculated dimerization energies correlated well with the binding free energies measured for the 1:2 complexes, and provided the main contribution to the driving force of complexation in the γ-CD cavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.