Significance Despite the identification of neural circuits and circulating hormones in olfactory regulation, the peripheral targets for olfactory modulation remain relatively unexplored. Here we show that dopamine D2 receptor (DRD2) is expressed in the cilia and somata of mature olfactory sensory neurons (OSNs), while nasal dopamine (DA) is mainly released from the sympathetic nerve terminals, which innervate the mouse olfactory mucosa (OM). We further demonstrate that DA-DRD2 signaling in the nose plays important roles in regulating olfactory function using genetic and pharmacological approaches. Moreover, the local DA synthesis in mouse OM is reduced during hunger, which contributes to starvation-induced olfactory enhancement. Altogether, we demonstrate that nasal DA and DRD2 receptor can serve as the potential peripheral targets for olfactory modulation.
Chronic cerebral ischaemia (CCI) is a high-incidence cardiovascular and cerebrovascular disease that is very common in clinical practice. Although many pathogenic mechanisms have been explored, there is still great controversy among neuroscientists regarding the pathogenesis of CCI. Therefore, it is important to elucidate the mechanisms of CCI occurrence and progression for the prevention and treatment of ischaemic cerebrovascular disorders. Autophagy and inflammation play vital roles in CCI, but the relationship between these two processes in this disease remains unknown. Here, we review the progression and discuss the functions, actions and pathways of autophagy and inflammation in CCI, including a comprehensive view of the transition from acute disease to CCI through ischaemic repair mechanisms. This review may provide a reference for future research and treatment of CCI. Graphical Abstract Schematic diagram of the interplay between autophagy and inflammation in CCI. CCI lead to serious, life-threatening complications. This review summarizes two factors in CCI, including autophagy and inflammation, which have been focused for the mechanisms of CCI. In short, the possible points of intersection are shown in the illustration. CCI, Chronic cerebral ischaemia; ER stress, Endoplasmic reticulum stress; ROS, Reactive oxygen species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.