This paper is concerned with the traveling waves for a class of delayed reaction-diffusion equations with crossingmonostability. In the previous papers, we established the existence and uniqueness of traveling waves which may not be monotone. However, the stability of such traveling waves remains open. In this paper, by means of the (technical) weighted energy method, we prove that the traveling wave is exponentially stable, when the initial perturbation around the wave is relatively small in a weighted norm. As applications, we consider the delayed diffusive Nicholson's blowflies equation in population dynamics and Mackey-Glass model in physiology. (2000). 35K57 · 35R10 · 35B40 · 92D25.
Mathematics Subject Classification
This paper is concerned with the traveling fronts of a diffusive food-limited population model with spatiotemporal delay. Sufficient conditions are established for the existence of traveling wave fronts by choosing different kinds of delay kernels. The approach used here is the upper-lower solution method and monotone iteration technique. Our work extends and/or covers some previous results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.