Background and Objectives: Chronic inflammation of bone tissue often results in bone defects and hazards to tissue repair and regeneration. Cannabidiol (CBD) is a natural cannabinoid with multiple biological activities, including anti-inflammatory and osteogenic potential. This study aimed to investigate the efficacy and mechanisms of CBD in the promotion of bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation in the inflammatory microenvironment. Methods and Results: BMSCs isolated from C57BL/6 mice, expressed stem cell characteristic surface markers and presented multidirectional differentiation potential. The CCK-8 assay was applied to evaluate the effects of CBD on BMSCs' vitality, and demonstrating the safety of CBD on BMSCs. Then, BMSCs were stimulated with lipopolysaccharide (LPS) to induce inflammatory microenvironment. We found that CBD intervention down-regulated mRNA expression levels of inflammatory cytokines and promoted cells proliferation in LPS-treated BMSCs, also reversed the protein and mRNA levels downregulation of osteogenic markers caused by LPS treatment. Moreover, CBD intervention activated the cannabinoid receptor 2 (CB2) and the p38 mitogen-activated protein kinase (MAPK) signaling pathway. While AM630, a selective CB2 inhibitor, reduced phosphorylated (p)-p38 levels. In addition, AM630 and SB530689, a selective p38 MAPK inhibitor, attenuated the enhancement of osteogenic markers expression levels by CBD in inflammatory microenvironment, respectively. Conclusions: CBD promoted osteogenic differentiation of BMSCs via the CB2/p38 MAPK signaling pathway in the inflammatory microenvironment.
To study the species of lanthanum (III) nitrate (La[NO3]3) dispersed in cell media and the effect on the osteoblast differentiation of bone marrow stroma cells (BMSCs). Different La-containing precipitations were obtained by adding various concentrations of La(NO3)3 solutions to Dulbecco’s modified Eagle medium (DMEM) or DMEM with fetal bovine serum (FBS). A series of characterisation methods, including dynamic light scattering, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and protein quantification were employed to clarify the species of the different La-containing precipitations. The primary BMSCs were isolated, and the cell viability, alkaline phosphatase activity, and the formation of a mineralised nodule of BMSCs were tested when treated with different La-containing precipitations. The La(NO3)3 solutions in DMEM could form LaPO4, which exits in the particle formation, while the La(NO3)3 solutions in DMEM with FBS could form a La-PO4-protein compound. When treated with La(NO3)3 solutions in DMEM, the cell viability of the BMSCs was inhibited at the concentrations of 1, 10, and 100 μM at 1 day and 3 days. Meanwhile, the supernatant derived from the La(NO3)3 solutions in DMEM did not affect the cell viability of the BMSCs. In addition, the precipitate derived from the La(NO3)3 solutions in DMEM added to the complete medium inhibited the cell viability of the BMSCs at concentrations of 10 μM and 100 μM. When treated with La(NO3)3 solutions in DMEM with FBS, the derived precipitate and supernatant did not affect the cell viability of the BMSCs, except for the concentration of 100 μM La(NO3)3. The La-PO4-protein formed from the La(NO3)3 solutions in DMEM with FBS inhibited the osteoblast differentiation of BMSCs at the concentration of 1 μM La(NO3)3 (P < 0.05) but had no effect on either the osteoblast differentiation at the concentrations of 0.001 and 0.1 μM or on the formation of a mineralised nodule at all tested concentrations of La(NO3)3. Overall, La(NO3)3 solutions in different cell culture media could form different La-containing compounds: La-PO4 particles (in DMEM) and a La-PO4-protein compound (in DMEM with FBS). The different La-containing compounds caused different effects on the cell viability, osteoblast differentiation, and the formation of a mineralised nodule of the BMSCs. The La-containing precipitation inhibited the osteoblast differentiation by inhibiting the expression of osteoblast-related genes and proteins, providing a theoretical basis for clinical doctors to apply phosphorus-lowering drugs such as lanthanum carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.