Although iron plays a critical role in exercise, the regulatory mechanism of iron metabolism remains poorly understood. The aims of the present study were to investigate the effects of different intensity exercise on body iron status and the regulatory mechanism of duodenal iron absorption. Thirty female Sprague-Dawley rats (90-100 g) were randomly divided into three groups: a control group (remained sedentary, CG), a moderately exercised group (swam 1.5 h/day, MG) and a strenuously exercised group (swam with different load, SG). Serum iron status, serum ferritin and Hct were examined after 10 weeks of swimming. Western blot was performed to detect the expression of iron transport proteins: divalent metal transporter1 (DMT1) and ferroportin 1 (FPN1) in duodenal epithelium. The expression of hepcidin mRNA in liver was examined by RT-PCR. The results showed: (1) the body iron status in MG was kept at a high level compared to that of CG and SG, (2) Western blot showed DMT1 with iron responsive element (IRE) and FPN1 in duodenal epithelium which were higher in MG than that of CG and (3) the expression of hepatic hepcidin mRNA was down regulated in MG (p < 0.05). The data suggested that moderate exercise improved iron status and that was likely regulated by increased DMT1 with IRE and FPN1 expression. Hepcidin signaling pathway may involve in the regulation of duodenal iron absorption proteins.
The mechanism of renal failure during fulminant hepatic failure (FHF) or end-stage of liver disease is not fully understood. The present study aims to delineate the mechanisms of decreased glomerular filtration rate (GFR) in acute hepatic failure. A rat model of renal insufficiency in severe liver injury was established by lipopolysaccharide (LPS) plus D-galactosamine (GalN) exposure. GFR was evaluated by continuous infusion of fluorescein isothiocyanate-inulin with implanted micro-osmotic pumps. GalN/LPS intoxication resulted in severe hepatocyte toxicity as evidenced by liver histology and biochemical tests, whereas renal morphology remained normal. GFR was reduced by 33% of the controls 12 h after GalN/LPS exposure, accompanied with a decreased serum sodium levels, a marked increase in serum TNF-a and ET-1 levels as well as significantly upregulated renal type 1 inositol 1,4,5-trisphosphate receptor (IP 3 R1) expression. The upregulated IP 3 R1 expression was abrogated by the treatment of anti-TNF-a antibodies, but not by 2-aminoethoxydiphenylborate (2-APB), which blocks the inositol 1,4,5-trisphosphate signaling pathway. Treatments with either TNF-a antibodies or 2-APB also significantly improved the compromised GFR, elevated serum urea nitrogen and creatinine levels, and reversed the decrease in glomerular inulin space and the increase in glomerular calcium content in GalN/LPS-exposed rats. The extent of acute liver injury as reflected by serum ALT levels was much more attenuated by anti-TNF-a antibodies than by 2-APB. Liver histology further confirmed that anti-TNF-a antibodies conferred better protection than 2-APB in GalN/LPS-exposed rats. LPS-elicited TNF-a over-production is responsible for decreased GFR through IP 3 R1 overexpression, and the compromised GFR resulted in the development of acute renal failure in rats with FHF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.