Controlling material properties at the nanoscale is a critical enabler of high performance electronic and photonic devices. A prototypical material example is VO 2 , where a structural phase transition in correlation with dramatic changes in resistivity, optical response, and thermal properties demonstrates particular technological importance. While the phase transition in VO 2 can be controlled at macroscopic scales, reliable and reversible nanoscale control of the material phases has remained elusive. Here, reconfigurable nanoscale manipulations of VO 2 from the pristine monoclinic semiconducting phase to either a stable monoclinic metallic phase, a metastable rutile metallic phase, or a layered insulating phase using an atomic force microscope is demonstrated at room temperature. The capability to directly write and erase arbitrary 2D patterns of different material phases with distinct optical and electrical properties builds a solid foundation for future reprogrammable multifunctional device engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.