The aim of this study was to investigate the effect of cardiac troponin I-interacting kinase (TNNI3K) on sepsis-induced myocardial dysfunction (SIMD) and further explore the underlying molecular mechanisms. In this study, a lipopolysaccharide- (LPS-) induced myocardial injury model was used. qRT-PCR was performed to detect the mRNA expression of TNNI3K. Western blot was conducted to quantitatively detect the expression of TNNI3K and apoptosis-related proteins (Bcl-2, Bax, and caspase-3). ELISA was performed to detect the content of lactate dehydrogenase (LDH) and creatine kinase (CK). TUNEL assay was used to detect the apoptosis of H9C2 cells. In LPS-induced H9C2 cells, TNNI3K was up regulated. Besides, the CK activity, the content of LDH, and the apoptosis of H9C2 cells were significantly increased after treatment with LPS. Silencing TNNI3K decreased the LDH release activity and CK activity and inhibited apoptosis of H9C2 cell. Further research illustrated that si-TNNI3K promoted the protein expression of Bcl-2 and decreased the protein expression of Bax and cleaved caspase-3. The study concluded that TNNI3K was upregulated in LPS-induced H9C2 cells. Importantly, functional research findings indicated that silencing TNNI3K alleviated LPS-induced H9C2 cell injury by regulating apoptosis-related proteins.
Previous genome-wide association studies (GWASs) found that several ATP2B1 variants are associated with essential hypertension (EHT). But the “genome-wide significant” ATP2B1 SNPs (rs2681472, rs2681492, rs17249754, and rs1105378) are in strong linkage disequilibrium (LD) and are located in the same LD block in Chinese populations. We asked whether there are other SNPs within the ATP2B1 gene associated with susceptibility to EHT in the Han Chinese population. Therefore, we performed a case-control study to investigate the association of seven tagSNPs within the ATP2B1 gene and EHT in the Han Chinese population, and we then analyzed the interaction among different SNPs and nongenetic risk factors for EHT. A total of 902 essential hypertensive cases and 902 normotensive controls were involved in the study. All 7 tagSNPs within the ATP2B1 gene were retrieved from HapMap, and genotyping was performed using the Tm-shift genotyping method. Chi-squared test, logistic regression, and propensity score analysis showed that rs17249754 was associated with EHT, particularly in females. The MDR analysis demonstrated that the interaction of rs2070759, rs17249754, TC, TG, and BMI increased the susceptibility to hypertension. Crossover analysis and stratified analysis indicated that BMI has a major effect on the development of hypertension, while ATP2B1 variants have a minor effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.