Purpose Soil contamination mainly from human activities remains a major environmental problem in the contemporary world. Significant work has been undertaken to position biochar as a low-cost material useful for the management of contaminants in various environmental media notably soil. Here, we review the increasing research on the use of biochar in soil for the remediation of some organic and inorganic contaminants. Materials and methods Bibliometric analysis were carried out within the past 10 years to determine the increasing trend in research related to biochar in soil for contaminant remediation. Five exemplar contaminants were reviewed in both laboratory and field-based studies. These included two inorganic (i.e. As and Pb), and three organic classes (i.e. sulfamethoxazole, atrazine, and PAHs). The contaminants were selected based on bibliometric data and as representatives of their various contaminant classes. For example, As and Pb are potentially toxic elements (anionic and cationic, respectively) while sulfamethoxazole, atrazine, and PAHs represent antibiotics, herbicides and hydrocarbons, respectively. Results and discussion The interaction between biochar and contaminants in soil is largely driven by biochar precursor material and pyrolysis temperature as well as some characteristics of the contaminants such as octanolwater partition coefficient (KOW) and polarity. The structural and chemical characteristics of biochar in turn determine the major sorption mechanisms and define biochar's suitability for contaminant sorption. Based on the reviewed literature, a soil treatment plan is suggested to guide the application of biochar in various soil types (paddy soils, brownfield and mine soils) at different pH levels (4-5.5) and contaminant concentrations (< 50 and > 50 mg kg-1). Conclusions Research on biochar has grown over the years with significant focus on its properties, and how these affect biochar's ability to immobilize organic and inorganic contaminants in soil. Few of these studies have been field-based. More studies with greater focus on field-based soil remediation are therefore required to fully understand the behavior of biochar under natural circumstances. Other recommendations are made aimed at stimulating future research in areas where significant knowledge gaps exist.
By adopting the method of orthogonal experimental design, the effect of three independent variables, that is steel fiber fraction, polypropylene fiber fraction and silica fume fraction on the compressive strength, flexural strength and shrinkage of cement mortar was studied. The results indicate that steel fiber is one of the most important factors affecting compressive strength and shrinkage, and polypropylene fiber is one of the most important factors affecting flexural strength and shrinkage of cement mortar. By using deviation analysis to analyze the orthogonal experiment results, the optimized mix proportion of hybrid fiber reinforced cement mortar is determined. The hybrid effect of steel fiber and polypropylene fiber on the properties of cement mortar is discussed.
This work aims to evaluate the effect of Kevlar fibers with chemical treatment on the flexural strength, compressive strength and impact resistance of cement mortar. The experimental results exhibit that Kevlar fiber with a larger percentage can increase the flexural strength and improve the impact resistance of cement mortar, and the reinforcement effect of Kevlar fiber with chemical treatment is more obvious. The surface morphology of Kevlar fiber and the fracture surface of cement mortar reinforced with Kevlar fiber were observed by SEM, and the reinforcement mechanism of the Kevlar fiber on cement mortar was discussed.
Based on uniaxial tensile test, the complete uniaxal tensile stress-strain curve of Reactive Powder Concrete (the steel fiber content by volume is Vf =1%, 2%) was obtained, and the fracture energy of RPC specimens with cross-section of 100mm by 100mm was calculated. The test was finished through Universal Testing Machine without any stiffness-strengthen devices. In order to solve the stress concentration problem, a self-designed uniaxial tensile test equipment was developed, and a dumbbell-shaped specimen was used in the test. The results indicate that the fracture energy of RPC increased as well as the increasing of Vf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.