The study investigates the feasibility of the Lamb wave topological imaging method for detecting multiple blindholes in an isotropic plate. The topological imaging method is performed based on the computations of two wave fields, a forward and an adjoint, in the defect-free reference medium using different emitting sources. The image is computed by multiplying the forward and adjoint wave fields together and integrating them over time or frequency. The interferences of multimode aliasing and the scattering effect can thus be eliminated at the defectfree positions with an improved image resolution. To investigate the physical mechanism, the refocusing process of the multimode Lamb waves at the defect positions is presented by a face-to-face comparison between the snapshots of the forward and adjoint wave fields using the finite element simulation. The Lamb wave topological imaging method is numerically and experimentally verified to identify multiple blind-holes in an isotropic aluminium plate. The results demonstrate that the topological imaging method enables the suppression of the sartefacts resulting from the mode conversion and achieve high-resolution imaging of the blind defects
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.