Background:The highly flexible C-terminal region of TDP-43 is implicated in disease pathology. Results: An amyloidogenic core was identified to be critical for TDP-43 aggregation. Conclusion: Helix-to-sheet structural transformation of the amyloidogenic core initiates TDP-43 aggregation and cytoplasmic inclusion formation. Significance: This is a potential therapeutic target for mitigating the TDP-43 proteinopathies.
Edited by Barry HalliwellKeywords: TAR DNA binding protein of 43kDa C-terminal fragment of $35kDa Sequestration Cytoplasmic inclusion RNA recognition motif a b s t r a c t TDP-43 (TAR DNA binding protein of 43kDa) and its C-terminal fragments are thought to be linked to the pathologies of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Here, we demonstrate that the aggregates or inclusions formed by its 35-kDa fragment (namely TDP-35) sequester full-length TDP-43 into cytoplasmic inclusions; and this sequestration is mediated by binding with RNA that is enriched in the cytoplasmic inclusions. RNA recognition motif 1 (RRM1) of TDP-43/TDP-35 plays a dominant role in nucleic-acid binding; mutation in this moiety abrogates formation of the TDP-35 inclusions and its RNA-assisted association with TDP-43. Thus, TDP-35 is able to sequester TDP-43 from nuclear localization into cytoplasmic inclusions, and RNA binding plays an essential role in this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.