This article proposes a novel energy management strategy (EMS) for a fuel cell electric vehicle (FCEV). The strategy combines the offline optimization and online algorithms to guarantee optimal control, real-time performance, and better robustness in an unknown route. In particular, dynamic programming (DP) is applied in a database with multiple driving cycles to extract the theoretically optimal power split between the battery and fuel cell with a priori knowledge of the driving conditions. The analysis of the obtained results is then used to extract the rules to embed them in a real-time capable fuzzy controller. In this sense, at the expense of certain calibration effort in the offline phase with the DP results, the proposed strategy allows on-board applicability with suboptimal results. The proposed strategy has been tested in several actual driving cycles, and the results show energy savings between 8.48% and 10.71% in comparison to rule-based strategy and energy penalties between 1.04% and 3.37% when compared with the theoretical optimum obtained by DP. In addition, a sensitivity analysis shows that the proposed strategy can be adapted to different vehicle configurations. As the battery capacity increases, the performance can be further improved by 0.15% and 1.66% in conservative and aggressive driving styles, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.