N‐linked oligosaccharides (N‐glycans) derived from milk were recently found to be antipathogenic. This study compares the antimicrobial activity of N‐linked glycans and free oligosaccharides from human, bovine, and goat milk against Staphylococcus aureus. Milk N‐glycans showed a bactericidal/bacteriostatic effect on the pathogen when compared to free milk oligosaccharides, evidenced by the clear zone from the halo assay, with the order of human milk >goat milk >bovine milk. None of the free milk oligosaccharide samples were bactericidal/bacteriostatic, despite its positive results in growth curve and minimum inhibitory concentration (MIC) assays which are believed to be related to hyperosmosis. Both N‐glycans and free milk oligosaccharides can reduce the adhesion of Staphylococcus aureus to Caco‐2 cells, however, N‐glycans worked significantly more effective than free milk oligosaccharides. Structural analysis of all free oligosaccharide and N‐glycan samples showed the obvious interspecies differences, and the structure/function relationship of the respected N‐glycans is of interest for future study. The significant bactericidal/bacteriostatic activity possessed by human, bovine, and goat milk N‐linked glycans holds great potential as a novel substitute for antibiotics.
Focal cortical dysplasias (FCDs) are frequently associated with the medical refractory epilepsy in both children and adults. Transient receptor potential canonical channel 5 (TRPC5), a receptor-operated cation channel, has been well recognized as a regulator in the central nervous system. Here, we examined the expression and cellular distribution of TRPC5 in the specimens from patients with FCDIa (n = 14), FCDIIa (n = 12), and FCDIIb (n = 12) compared with the age-matched control cortex (CTX). TRPC5 mRNA and protein levels were significantly higher in FCDs compared with CTX. Immunohistochemical data showed that TRPC5 was strongly expressed in the misshapen cells, particularly in neuronal microcolumns, dysmorphic neurons, and balloon cells. Moreover, the double-label immunofluorescence analyses demonstrated that TRPC5 localized on NeuN-positive neurons. In addition, its co-localization with glutamate and gamma-aminobutyric acid (GABA) indicated that TRPC5 was distributed on both glutamatergic and GABAergic neurons. Taken together, these results suggested that increased expression of TRPC5 in FCDs and the cell-specific distribution patterns of TRPC5 in the misshapen neurons in FCDs could potentially contribute to the epileptogenesis of FCDs.
Background: β-galactosidases are enzymes that are utilized to hydrolyze lactose into galactose and glucose, and are is widely used in the food industry. Objective: We describe the recombinant expression of an unstudied, heterodimeric β-galactosidase originating from Lactobacillus brevis ATCC 367 in Escherichia coli. Furthermore, six different constructs, in which the two protein subunits were fused with different peptide linkers. Method: The heterodimeric subunits of the β-galactosidase were cloned in expressed in various expression constructs, by using either two vectors for the independent expression of each subunit, or using a single Duet vector for the co-expression of the two subunits. Results: The co-expression in two independent expression vectors only resulted in low β-galactosidase activities, whereas the co-expression in a single Duet vector of the independent and fused subunits increased the β-galactosidase activity significantly. The recombinant β-galactosidase showed comparable hydrolyzing properties towards lactose, N-acetyllactosamine, and pNP-β-D-galactoside. Conclusion: The usability of the recombinant L. brevis β-galactosidase was further demonstrated by the hydrolysis of human, bovine, and goat milk samples. The herein presented fused β-galactosidase constructs may be of interest for analytical research as well as in food- and biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.