Without any preinstalled infrastructure, pedestrian dead reckoning (PDR) is a promising indoor positioning technology for pedestrians carrying portable devices to navigate. Step detection and step length estimation (SLE) are two essential components for the pedestrian navigation based on PDR. To solve the overcounting problem, this study proposes a peak-valley detection method, which can remove the abnormal values effectively. The current step length models mostly depend on individual parameters that need to be predetermined for different users. Based on fuzzy logic (FL), we establish a rule base that can adjust the coefficient in the Weinberg model adaptively for every detected step of various human shapes walking. Specifically, to determine the FL rule base, we collect user acceleration data from 10 volunteers walking under the combination of diverse step length and stride frequency, and each one walks 49 times at all. The experimental results demonstrate that our proposed method adapts to different kinds of persons walking at various step velocities. Peak-valley detection can achieve an average accuracy of 99.77% during 500 steps of free walking. Besides, the average errors of 5 testers are all less than 4 m per 100 m and the smallest one is 1.74 m per 100 m using our coefficient self-determined step length estimation model.
We consider theoretical and practical issues for innovatively using a large number of covariates in clinical trials to achieve various design objectives without model misspecification. Specifically, we propose a new family of semiparametric covariate‐adjusted response‐adaptive randomization (CARA) designs and we use the target maximum likelihood estimation (TMLE) to analyze the correlated data from CARA designs. Our approach can flexibly achieve multiple objectives and correctly incorporate the effect of a large number of covariates on the responses without model misspecification. We also obtain the consistency and asymptotic normality of the target parameters, allocation probabilities, and allocation proportions. Numerical studies demonstrate that our approach has advantages over existing approaches, even when the data‐generating distribution is complicated.
Nonlinear surface waves propagating along a single interface between a linear metamaterial and a nonlinear antiferromagnet are theoretically studied. The frequency response of transverse-magnetic-polarized waves covering the frequency range from the microwave to the infrared regime is investigated in detail. We find that the waveguide supports soliton-like surface waves with low-pass response in the microwave range and bandpass response in the microwave and infrared ranges. The bandwidth is a function of the nonlinearity and can be tuned by controlling the incident wave power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.