No abstract
Personalized real-time recommendation has had a profound impact on retail, media, entertainment and other industries. However, developing recommender systems for every use case is costly, time consuming and resource-intensive. To fill this gap, we present a black-box recommender system that can adapt to a diverse set of scenarios without the need for manual tuning. We build on techniques that go beyond simple matrix factorization to incorporate important new sources of information: the temporal order of events [Hidasi et al., 2016], contextual information to bootstrap cold-start users, metadata information about items [Rendle 2012] and the additional information surrounding each event. Additionally, we address two fundamental challenges when putting recommender systems in the real-world: how to efficiently train them with even millions of unique items and how to cope with changing item popularity trends [Wu et al., 2017]. We introduce a compact model, which we call hierarchical recurrent network with meta data (HRNN-meta) to address the real-time and diverse metadata needs; we further provide efficient training techniques via importance sampling that can scale to millions of items with little loss in performance. We report significant improvements on a wide range of real-world datasets and provide intuition into model capabilities with synthetic experiments. Parts of HRNN-meta have been deployed in production at scale for customers to use at Amazon Web Services and serves as the underlying recommender engine for thousands of websites.
Recently there has been a surge of research on improving the communication efficiency of distributed training. However, little work has been done to systematically understand whether the network is the bottleneck and to what extent.In this paper, we take a first-principles approach to measure and analyze the network performance of distributed training. As expected, our measurement confirms that communication is the component that blocks distributed training from linear scale-out. However, contrary to the common belief, we find that the network is running at low utilization and that if the network can be fully utilized, distributed training can achieve a scaling factor of close to one. Moreover, while many recent proposals on gradient compression advocate over 100× compression ratio, we show that under full network utilization, there is no need for gradient compression in 100 Gbps network. On the other hand, a lower speed network like 10 Gbps requires only 2×-5× gradients compression ratio to achieve almost linear scale-out. Compared to application-level techniques like gradient compression, network-level optimizations do not require changes to applications and do not hurt the performance of trained models. As such, we advocate that the real challenge of distributed training is for the network community to develop high-performance network transport to fully utilize the network capacity and achieve linear scale-out.
We present GluonCV and GluonNLP, the deep learning toolkits for computer vision and natural language processing based on Apache MXNet (incubating). These toolkits provide state-of-the-art pre-trained models, training scripts, and training logs, to facilitate rapid prototyping and promote reproducible research. We also provide modular APIs with flexible building blocks to enable efficient customization. Leveraging the MXNet ecosystem, the deep learning models in GluonCV and GluonNLP can be deployed onto a variety of platforms with different programming languages. Benefiting from open source under the Apache 2.0 license, GluonCV and GluonNLP have attracted 100 contributors worldwide on GitHub. Models of GluonCV and GluonNLP have been downloaded for more than 1.6 million times in fewer than 10 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.