SummaryFADD is a common adaptor shared by several death-receptors (DRs) for signaling apoptosis through recruitment and activation of caspase 81-3. DRs are essential for immune homeostasis, but dispensable during embryogenesis. Surprisingly, FADD−/− mice die in utero4-5 and conditional deletion of FADD leads to impaired lymphocyte proliferation6-7. How FADD regulates embryogenesis and lymphocyte responses has been a long standing enigma. FADD could directly bind to RIP1, a serine/threonine kinase which mediates both necrosis and NF-κB activation. Here we show that FADD−/− embryos contain elevated levels of RIP1 and exhibit massive necrosis. To investigate potential in vivo functional interaction between RIP1 and FADD, null alleles of RIP1 were crossed into FADD−/− mice. Strikingly, RIP1 deficiency allowed normal embryogenesis of FADD−/− mice. Conversely, the developmental defect of RIP1−/− lymphocytes was partially corrected by FADD deletion. Furthermore, RIP1 deficiency fully restored normal proliferation in FADD−/− T cells but not in FADD−/− B cells. FADD−/−RIP1−/− double knockout (DKO) T cells are resistant to death induced by Fas or TNFα and display reduced NF-κB activity. Therefore, our data demonstrate an unexpected cell type-specific interplay between FADD and RIP1, which is critical for the regulation of apoptosis and necrosis during embryogenesis and lymphocyte function.
Aliphatic carboxylates are the most common class of surface ligands to stabilize colloidal nanocrystals. The widely used approach to identify the coordination modes between surface cationic sites and carboxylate ligands is based on the empirical infrared (IR) spectroscopic assignment, which is often ambiguous and thus hampers the practical control of surface structures. In this report, multiple techniques based on nuclear magnetic resonance (NMR) and IR spectra are applied to distinguish the different coordination structures in a series of zinc-blende CdSe nanocrystals with unique facet structures, including nanoplatelets dominated with {100} basal planes, hexahedrons with only three types of low-index facets (i.e., {100}, {110}, and {111}), and spheroidal dots without well-defined facets. Interpretation and assignment of NMR and IR signals were assisted by density functional theory (DFT) calculations. In addition to the identification of facet-sensitive bonding modes, the present methods also allow a nondestructive quantification of mixed ligands.
BackgroundProgrammed necrosis/necroptosis is an emerging form of cell death that plays important roles in mammalian development and the immune system. The pro-necrotic kinases in the receptor interacting protein (RIP) family are crucial mediators of programmed necrosis. Recent advances in necrosis research have been greatly aided by the identification of chemical inhibitors that block programmed necrosis. Necrostatin-1 (Nec-1) and its derivatives were previously shown to target the pro-necrotic kinase RIP1/RIPK1. The protective effect conferred by Nec-1 and its derivatives in many experimental model systems was often attributed to the inhibition of RIP1 function.Methodology/Principal FindingsWe compared the effect of Nec-1 and siRNA-mediated silencing of RIP1 in the murine fibrosarcoma cell line L929. Treatment of L929 cells with the pan-caspase inhibitor zVAD-fmk or exogenous TNF induces necrosis. Strikingly, we found that siRNA-mediated silencing of RIP1 inhibited zVAD-fmk induced necrosis, but not TNF-induced necrosis. TNF-induced cell death in RIP1 knocked down L929 cells was inhibited by Nec-1, but not the caspase inhibitor zVAD-fmk. We found that PKA-C§ expression, but not Jnk or Erk activation, was moderately inhibited by Nec-1. Moreover, we found that Nec-1 inhibits proximal T cell receptor signaling independent of RIP1, leading to inhibition of T cell proliferation.Conclusions/SignificanceOur results reveal that besides RIP1, Nec-1 also targets other factors crucial for necrosis induction in L929 cells. In addition, high doses of Nec-1 inhibit other signal transduction pathways such as that for T cell receptor activation. These results highlight the importance to independently validate results obtained using Nec-1 with other approaches such as siRNA-mediated gene silencing. We propose that some of the previous published results obtained using Nec-1 should be re-evaluated in light of our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.