Despite advances in the bioprinting technology, biofabrication of circumferentially multilayered tubular tissues or organs with cellular heterogeneity, such as blood vessels, trachea, intestine, colon, ureter, and urethra, remains a challenge. Herein, a promising multichannel coaxial extrusion system (MCCES) for microfluidic bioprinting of circumferentially multilayered tubular tissues in a single step, using customized bioinks constituting gelatin methacryloyl, alginate, and eight-arm poly(ethylene glycol) acrylate with a tripentaerythritol core, is presented. These perfusable cannular constructs can be continuously tuned up from monolayer to triple layers at regular intervals across the length of a bioprinted tube. Using customized bioink and MCCES, bioprinting of several tubular tissue constructs using relevant cell types with adequate biofunctionality including cell viability, proliferation, and differentiation is demonstrated. Specifically, cannular urothelial tissue constructs are bioprinted, using human urothelial cells and human bladder smooth muscle cells, as well as vascular tissue constructs, using human umbilical vein endothelial cells and human smooth muscle cells. These bioprinted cannular tissues can be actively perfused with fluids and nutrients to promote growth and proliferation of the embedded cell types. The fabrication of such tunable and perfusable circumferentially multilayered tissues represents a fundamental step toward creating human cannular tissues.
A series of long-chain branched poly(L-lactide)s (LCB-PLAs) with controlled branch length were prepared by a simple and efficient method through a combination of ring-opening polymerization (ROP) of L-lactide and a coupling reaction between the terminal OH groups of the PLA prepolymers and the NCO groups of HDI. The influences of reaction conditions on the synthesis of the LCB-PLAs were investigated, and the structures of the resultant LCB-PLAs were characterized by 1 H NMR spectroscopy and SEC-MALLS. By adjusting the degree of polymerization and the composition of the prepolymers, LCB-PLAs with different branch densities and molecular weights between branch points were obtained. The effect of macromolecular chain branching on the rheology and crystallization of PLA was also investigated. The LCB structure contributed to the enhancement of the zero-shear viscosity, complex viscosity, storage modulus, melt strength, and strain hardening under elongational flow. Thermal behavior indicated that the branch structure resulted in a short nucleation induction period and more rapid crystallization, which can be a guarantee of high-strength foams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.