A novel convolutional neural network namely the modified CNN-GAP model is proposed for fast fault diagnosis of the DC-DC inverter. This method improves the model structure of the traditional CNN by using a global average pooling layer to replace the fully connected layer of 2∼3 layers. The improved CNN-GAP method mainly contains an input layer, a feature extraction layer, a global average pooling (GAP) layer, and a Softmax output layer. Firstly, the raw 1-D time-series data directly input into the input layer of the established CNN-GAP diagnosis model. The 2-D feature maps are reconstructed in the input layer. Secondly, the representative features are automatically extracted from the 2-D feature maps by using multiple convolutional layers and pooling layers. Thirdly, the dimension transformation and size compression of the output image of the feature extraction layer is completed by the GAP layer. Finally, the fault diagnosis result of the DC-DC inverter is automatically output in the Softmax output layer. The proposed method is used for diagnosing the open-circuit fault of the IGBT in the isolated DC-DC inverter. The proposed method is more accurate and effective than other mainstream intelligent diagnosis methods including the SVM, KNN, DNN, and traditional CNN. The experiment results show that the diagnostic accuracy is up to 99.95%, and the testing time can reduce by more than 15%. The improved CNN-GAP method could greatly reduce the model parameter quantity of the traditional CNN more than 80%, which is more suitable for rapid fault diagnosis in electronic devices. INDEX TERMS Intelligent fault diagnosis, data-driven, convolutional neural network, global average pooling, 2-D feature image, deep learning, DC-DC inverter, IGBT open-circuit fault.
The most common cause of electric motor failure is the bearings, and so methods for fast and accurate diagnosis of motor bearing failure are urgently needed. Traditional fault diagnosis methods have high uncertainty and complexity since they require manual extraction of features. Deep learning has shown good performance in electrical equipment fault detection, and it can directly complete end-to-end diagnosis of motor faults, avoiding human involvement. Here, a new fault diagnosis method is presented which combines Gramian angular field (GAF) image coding, extreme learning machine (ELM) and convolutional neural network (CNN). The method has three main stages: First of all, GAF is utilized to convert the acquired vibration break signals into 2-D pictures. Next, the enhanced CNN model is taken to identify the elements of the converted image quickly and accurately. Finally, the ELM is used as the final classifier to gain further accuracy and diagnostic speed of fault classification. Experiments were designed to validate the proposed method using two different motor bearing fault datasets at Case Western Reserve University and autonomous experiment and performance is compared with several commonly used intelligent diagnosis algorithms. The proposed method's accuracy in the experiment designed in this paper can reach 99.2% at most, and it only takes 0.835s to complete the diagnosis, which outperforms traditional diagnostic methods on both datasets and improving the maximum diagnostic accuracy by 33.6%. The findings indicate that this method can classify various fault types efficaciously, and has the benefits of quick diagnosis, high accuracy, and good generalization ability.INDEX TERMS Gramian angular field image coding, convolutional neural network, extreme learning machine, fault diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.