Motor function assessment is crucial for post-stroke rehabilitation. Conventional evaluation methods are subjective, heavily depending on the experience of therapists. In light of the strong correlation between the stroke severity level and the performance of activities of daily living (ADLs), we explored the possibility of automatically evaluating the upperlimb Brunnstrom Recovery Stage (BRS) via three typical ADLs (tooth brushing, face washing and drinking). Multimodal data (acceleration, angular velocity, surface electromyography) were synchronously collected from 5 upper-limb-worn sensor modules. The performance of BRS evaluation system is known to be variable with different system parameters (e.g., number of sensor modules, feature types and classifiers). We systematically searched for the optimal parameters from different data segmentation strategies (five window lengths and four overlaps), 42 types of features, 12 feature optimization techniques and 9 classifiers with the leave-one-subject-out cross-validation. To achieve reliable and low-cost monitoring, we further explored whether it was possible to obtain a satisfactory result using a relatively small number of sensor modules. As a result, the proposed approach can correctly recognize the stages of all 27 participants using only three sensor modules with the optimized data segmentation parameters (window length: 7s, overlap: 50%), extracted features (simple square integral, slope sign change, modified mean absolute value 1 and modified mean absolute value 2), the feature optimization method (principal component analysis) and the logistic regression classifier. According to the literature, this is the first study to comprehensively optimize sensor configuration and parameters in each stage of the BRS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.