One rice ( Oryza sativa ) gene, sucrose phosphate synthase (SPS), has been proven to be a suitable endogenous reference gene for genetically modified (GM) rice detection in a previous study. Herein are the reported results of an international collaborative ring trial for validation of the SPS gene as an endogenous reference gene and its optimized qualitative and quantitative polymerase chain reaction (PCR) systems. A total of 12 genetically modified organism (GMO) detection laboratories from seven countries participated in the ring trial and returned their results. The validated results confirmed the species specificity of the method through testing 10 plant genomic DNAs, low heterogeneity, and a stable single-copy number of the rice SPS gene among 7 indica varieties and 5 japonica varieties. The SPS qualitative PCR assay was validated with a limit of detection (LOD) of 0.1%, which corresponded to about 230 copies of haploid rice genomic DNA, while the limit of quantification (LOQ) for the quantitative PCR system was about 23 copies of haploid rice genomic DNA, with acceptable PCR efficiency and linearity. Furthermore, the bias between the test and true values of eight blind samples ranged from 5.22 to 26.53%. Thus, we believe that the SPS gene is suitable for use as an endogenous reference gene for the identification and quantification of GM rice and its derivates.
Sepsis-induced multiple organ dysfunction and inflammatory response are life-threatening symptoms without effective treatment. Fisetin, a dietary flavonoid extracted from berries and family Fabaceae, has displayed neuroprotective and anti-oxidant activities. In this study we investigated whether fisetin exerted a protective effect against sepsis-induced multiple organ dysfunction in mouse cecum ligation and puncture (CLP) model. The mice were injected with fisetin (10 mg/kg, ip) 0.5 h prior to CLP, and sacrificed 18 h after CLP. We found that fisetin administration significantly alleviated CLP-induced lung, liver and kidney injury, as well as the expression levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β in bronchoalveolar lavage fluid (BALF). In lipopolysaccharide (LPS)-treated mouse bone marrow-derived macrophages (BMDMs), application of fisetin (3–10 μM) dose-dependently inhibited the expression levels of IL-6, TNF-α, IL-1β, and inducible nitric oxide synthase (iNOS). Furthermore, fisetin dose-dependently inhibited the phosphorylation of p38 MAPK, MK2, and transforming growth factor-β-activated kinase (TAK) 1 via attenuating the interaction between TAK1 and TAK-binding proteins (TAB) 1. These results demonstrate that fisetin is a promising agent for protecting against sepsis-induced inflammatory response and organ injury via inhibiting macrophage activation.
Background: The accumulation of astrocytes around senile plaques is one of the pathological characteristics in Alzheimer's disease (AD). Serum amyloid A (SAA), known as a major acute-phase protein, colocalizes with senile plaques in AD patients. Here, we demonstrate the role of SAA in astrocyte migration. Methods: The effects of SAA on astrocyte activation and accumulation around amyloid β (Aβ) deposits were detected in APP/PS1 transgenic mice mated with Saa3 −/− mice. SAA expression, astrocyte activation, and colocalization with Aβ deposits were evaluated in mice using immunofluorescence staining and/or Western blotting. The migration of primary cultures of mouse astrocytes and human glioma U251 cells was examined using Boyden chamber assay and scratch-would assay. The actin and microtubule networks, protrusion formation, and Golgi apparatus location in astrocytes were determined using scratch-would assay and immunofluorescence staining. Results: Saa3 expression was significantly induced in aged APP/PS1 transgenic mouse brain. Saa3 deficiency exacerbated astrocyte activation and increased the number of astrocytes around Aβ deposits in APP/PS1 mice. In vitro studies demonstrated that SAA inhibited the migration of primary cultures of astrocytes and U251 cells. Mechanistic studies showed that SAA inhibited astrocyte polarization and protrusion formation via disrupting actin and microtubule reorganization and Golgi reorientation. Inhibition of the p38 MAPK pathway abolished the suppression of SAA on astrocyte migration and polarization. Conclusions: These results suggest that increased SAA in the brain of APP/PS1 mice inhibits the migration of astrocytes to amyloid plaques by activating the p38 MAPK pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.