Introduction. Transtension is a system of stresses that tends to cause oblique extension, i.e. combined extension and strike slip. Syn-volcanic transtensional deformations of the lithosphere may provide two possible scenarios for control of magmatic processes. One scenario assumes ascending sub-lithospheric melts that mark the permeable lithosphere in a transtension area without melting of the lithospheric material; products of volcanic eruptions in such a zone show only the sub-lithospheric mantle material; components of magmatic liquids do not reveal any connection to the lithospheric structure. Another scenario yields a direct control of melting in lithospheric sources in an evolving transtensional structure. In this case, spatial-temporal changes of lithospheric and sub-lithospheric components are a direct indication of the evolving transtensional zone. In this paper, we present arguments in favor of the transtensional origin of the lithosphere-derived melting anomaly along the Wudalianchi volcanic zone, which are based on the study of components in the rocks sampled from the volcanic field of the same name.Analytical methods. Trace elements were determined by ICP-MS using a mass-spectrometer Agilent 7500ce and isotopes using a mass-spectrometer Finnigan MAT 262. The methods used were described in the previous papers by Rasskazov et al. [2011] and Yasnygina et al. [2015]. Major oxides were measured by "wet chemistry".Structural setting of the Wudalianchi zone. This zone extends north-south for 230 km at the northern circuit of the Songliao basin, subsided in the Late Mesozoic -Early Cenozoic (Fig. 1).Timing of volcanism and variations of K2O contents in rocks from the Wudalianchi zone. Rocks, dated back to the Pliocene and Quaternary, show the stepwise increasing K2O content interval along the Wudalianchi zone from the southernmost Erkeshan volcanic field (5.6-5.8 wt %) to the northernmost Xiaogulihe-Menlu volcanic field (2.0-9.5 wt %) (Fig. 2).Spatial-temporal clustering of volcanoes in the Wudalianchi field. In terms of the general Quaternary evolution of volcanism in Asia [Rasskazov et al., 2012], spatial-temporal distribution and compositional variations of volcanic products, we distinguish three time intervals of the volcanic evolution: (1) 2.5-2.0 Ma, (2) 1.3-0.8 Ma, and (3) <0.6 Ma. The Central group of volcanoes showed persistent shifting of eruptions from Wohushan (1.33-0.42 Ma) to to Laoheishan (1720-1721, possibly earlier) to Huoshaoshan (1721) (Figs 3, 4, 5). No spatial-temporal regularity of eruptions in volcanoes of the Erkeshan field and Western and Eastern groups of the Wudalianchi field reflected background activity.Sampling. Representative sampling of rocks from the Wohushan-Huoshaoshan volcanic line was aimed to identify changing geochemical signatures along the whole volcanic line and in the course of eruptions in each volcano (Figs 3, 6, 7). For comparisons, the background volcanoes were also sampled.Silica and alkalis oxides. On the total alkalis-silica (TAS) diagram (Fig. ...
The Neoproterozoic Quruqtagh Group in the Tarim Block, NW China, contains multiple diamictites in the Bayisi, Altungol, Tereeken, and Hankalchough formations. These diamictites may represent three or possibly four discrete glaciations, although evidence for a glacial origin of the Bayisi and Altungol diamictite is ambiguous. To constrain their age and duration, we dated three volcanic beds (V1, V2, and V3) in the Quruqtagh Group using the SHRIMP (sensitive high-resolution ion microprobe) zircon U-Pb method. Volcanic bed V1 near the base of the Bayisi diamictite yields a 740 ± 7 Ma age, volcanic bed V2 near the top of the Bayisi Formation gives a 725 ± 10 Ma age, and volcanic bed V3 between the Tereeken and Hankalchough diamictites yields a 615 ± 6 Ma age. V1 and V2 have overlapping ages, and together these dates suggest that the Bayisi diamictite was deposited at around 730 Ma. The Tereeken and Altungol diamictites were deposited between 725 ± 10 Ma and 615 ± 6 Ma, and the Hankalchough diamictite between 615 ± 6 Ma and ~542 Ma (i.e., the Neoproterozoic-Cambrian transition). These dates and previously published chemostratigraphic data are consistent with (but doe not require) the correlation of the Tereeken and Hankalchough diamictites with the 635 Ma Nantuo and 582 Ma Gaskiers glaciations, respectively. However, the new dates are inconsistent with a single and globally synchronous Sturtian glaciation that occurred in the pre-Nantuo Neoproterozoic Era. Instead, currently available data necessitate that either multiple glaciations occurred, or a globally diachronous glacial event developed during a protracted period between ~750 Ma and ~650 Ma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.