Approximated model instead of computational fluid dynamics tool is utilized for performance analysis in hull form optimization process, which can save time significantly. Sample selection is the central issue of approximated model building. This article focuses on the sample selection method and the application of approximated model in hull form optimization. Latin hypercube sampling and uniform design are compared. The uniform design based on genetic algorithm approach is proposed. The radial basis function interpolation method is used for hull surface automatic modification. An approximated model using a neural network for ship resistance performance is established. The stem profile's optimization for the Korea Research Institute of Ships and Ocean Engineering (KRISO) container ship is completed. The results show that hull form optimization based on the approximated model can significantly improve optimization efficiency and is practical for engineering design.
The particle swarm optimisation (PSO) algorithm has been widely used in hull form optimisation owing to its feasibility and fast convergence. However, similar to other intelligent algorithms, PSO also has the disadvantages of local premature convergence and low convergence performance. Moreover, optimization data are not used to analyse and reduce the range of values for relevant design variables. Our study aimed to solve these existing problems in the PSO algorithm and improve PSO from four aspects, namely data processing of particle swarm population initialisation, data processing of iterative optimisation, particle velocity adjustment, and particle cross-boundary configuration, in combination with space reduction technology. The improved PSO algorithm was used to optimise the hull form of an engineering vessel at Fn = 0.24 to reduce the wave-making resistance coefficient under static constraints. The results showed that the improved PSO algorithm could effectively improve the optimisation efficiency and reliability of PSO and effectively overcome the drawbacks of the PSO algorithm.
In order to truly reflect the ship performance under the influence of uncertainties, uncertainty-based design optimization (UDO) for ships that fully considers various uncertainties in the early stage of design has gradually received more and more attention. Meanwhile, it also brings high dimensionality problems, which may result in inefficient and impractical optimization. Sensitivity analysis (SA) is a feasible way to alleviate this problem, which can qualitatively or quantitatively evaluate the influence of the model input uncertainty on the model output, so that uninfluential uncertain variables can be determined for the descending dimension to achieve dimension reduction. In this paper, polynomial chaos expansions (PCE) with less computational cost are chosen to directly obtain Sobol' global sensitivity indices by its polynomial coefficients; that is, once the polynomial of the output variable is established, the analysis of the sensitivity index is only the postprocessing of polynomial coefficients. Besides, in order to further reduce the computational cost, for solving the polynomial coefficients of PCE, according to the properties of orthogonal polynomials, an improved probabilistic collocation method (IPCM) based on the linear independence principle is proposed to reduce sample points. Finally, the proposed method is applied to UDO of a bulk carrier preliminary design to ensure the robustness and reliability of the ship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.