Numerous studies have confirmed that climate change leads to a decrease in the net ecosystem productivity (NEP) of terrestrial ecosystems and alters regional carbon source/sink patterns. However, the response mechanism of NEP to climate change in the arid regions of Central Asia remains unclear. Therefore, this study combined the Carnegie–Ames–Stanford approach (CASA) and empirical models to estimate the NEP in Central Asia and quantitatively evaluate the sensitivity of the NEP to climate factors. The results show that although the net primary productivity (NPP) in Central Asia exhibits an increasing trend, it is not significant. Soil heterotrophic respiration (RH) has increased significantly, while the NEP has decreased at a rate of 6.1 g C·m−2·10 a−1. Spatially, the regional distribution of the significant increase in RH is consistent with that of the significant decrease in the NEP, which is concentrated in western and southern Central Asia. Specifically, the NPP is more sensitive to precipitation than temperature, whereas RH and NEP are more sensitive to temperature than precipitation. The annual contribution rates of temperature and precipitation to the NEP are 28.79% and 23.23%, respectively. Additionally, drought has an important impact on the carbon source/sink in Central Asia. Drought intensified from 2001 to 2008, leading to a significant expansion of the carbon source area in Central Asia. Therefore, since the start of the 21st century, climate change has damaged the NEP of the Central Asian ecosystem. Varying degrees of warming under different climate scenarios will further aggravate the expansion of carbon source areas in Central Asia. An improved understanding of climate change impacts in Central Asia is critically required for sustainable development of the regional economy and protection of its natural environment. Our results provide a scientific reference for the construction of the Silk Road Economic Belt and global emissions reduction.
The Tarim River Basin in Xinjiang, China, has a typical desert riparian forest ecosystem. Analysis of the resilience of this type of ecosystem under extreme drought conditions and ecological rehabilitation projects could provide a theoretical basis for understanding ecosystem stability and resistance, and provide new ecological rehabilitation measures to improve ecosystem resilience. We employed a quantitative framework to assess net primary productivity (NPP) resilience, emphasizing four aspects of NPP dynamics: NPP, NPP stability, NPP resistance, and maximum NPP potential. We compared ecosystem resilience across four time periods: before the implementation of ecological rehabilitation projects (1990–2000), during construction and partial implementation of ecological rehabilitation projects (2001–2012), during the initial project stage of ecological rehabilitation (2013–2015), and during the late project stage of ecological rehabilitation (2016–2018). There are three main finding of this research. (1) Mean NPP was increased significantly from 2013 and was decreased from 2016, especially in the main stream of the Tarim River and in the basins of eight of its nine tributary rivers. (2) Ecosystem resilience in 2013–2018 was greater than in 1990–2012, with the greatest NPP stability, mean NPP and NPP resistance, especially in part one of the river basin (the Aksu River, the Weigan-Kuche River, the Dina River, the Kaidu-Konqi River, and the main stream of the Tarim River). Ecosystem resilience in 2001–2012 was lowest when compared to 1990–2000 and 2013–2018, with lowest mean NPP, NPP stability, NPP resistance and maximum NPP potential, particularly in part two of the river basin (the Kashigr River, the Yarkand River and the Hotan River basins). Therefore, part one was most affected by ecological restoration projects. When 2013–2018 was divided into two distinct stages, 2013–2015 and 2016–2018, resilience in the latter stage was the lowest, with lowest mean NPP, NPP resistance and maximum NPP potential, especially in the main stream of the Tarim River. This may be due to unreasonable water conveyance in 2014–2015. (3) Ecological resilience has increased significantly in 2013–2015 after the implementation of ecological water transfer projects, river regulation, and natural vegetation enclosure projects. Ecosystem resilience could continue to increase even more in the future with the continued implementation of reasonable ecological water transfer projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.