Numerous studies employ multi-scale decomposition to improve the prediction performance of neural networks, but the grounds for selecting the decomposition algorithm are not explained, and the effects of decomposition algorithms on other performance of neural networks are also lacking further study. This paper studies the influence of commonly used multi-scale decomposition algorithms including EMD (Empirical Mode Decomposition), EEMD(Ensemble Empirical Mode Decomposition), CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise), VMD (Variational Mode Decomposition), WD (Wavelet Decomposition), and WPD (Wavelet Packet Decomposition) on the performance of Neural Networks. Decomposition algorithms are adopted to decompose traffic flow data into component signals, and then K-means is used to cluster component signals into volatility components, periodic components, and residual components. A Bi-directional LSTM (BiLSTM) neural network is adopted as the standard model for training and forecasting. Finally, three metrics, including prediction performance, robustness, and generalization performance are proposed to evaluate the influence of the multi-scale decomposition algorithm for neural networks comprehensively. By comparing the evaluation results of different hybrid models, this study provides some useful suggestions on proper multi-scale decomposition algorithm selection in short-time traffic flow prediction.
Real-time and accurate detection of ships plays a vital role in ensuring navigation safety and ship supervision. Aiming at the problems of large parameters, large computation quantity, poor real-time performance, and high requirements for memory and computing power of the current ship detection model, this paper proposes a ship target detection algorithm MC-YOLOv5s based on YOLOv5s. First, the MobileNetV3-Small lightweight network is used to replace the original feature extraction backbone network of YOLOv5s to improve the detection speed of the algorithm. And then, a more efficient CNeB is designed based on the ConvNeXt-Block module of the ConvNeXt network to replace the original feature fusion module of YOLOv5s, which improves the spatial interaction ability of feature information and further reduces the complexity of the model. The experimental results obtained from the training and verification of the MC-YOLOv5s algorithm show that, compared with the original YOLOv5s algorithm, MC-YOLOv5s reduces the number of parameters by 6.98 MB and increases the mAP by about 3.4%. Even compared with other lightweight detection models, the improved model proposed in this paper still has better detection performance. The MC-YOLOv5s has been verified in the ship visual inspection and has great application potential. The code and models are publicly available at https://github.com/sakura994479727/datas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.