Background Cisplatin is an extensively used chemotherapy agent for lung cancer, but its drug resistance serves as a huge obstacle for chemotherapy failure of lung cancer patients. Hence, researchers aimed to determine role of sirtuin 3 (SIRT3) considering its action in cisplatin resistance of lung cancer. Methods The expression patterns of SIRT3, FOXO3, and CDT1 were determined using RT‐qPCR and Immunoblotting in lung cancer. Immunofluorescence and Co‐IP were adopted to detect co‐localization and interaction of FOXO3 and CDT1. Loss‐ and gain‐function assays were conducted to determine roles of SIRT3, FOXO3, and CDT1 in resulting pathological changes, while biological behavior of cells was determined using a combination of CCK‐8, flow cytometry, colony formation, and Transwell assays. The effects of SIRT3 and CDT1 were determined in the nude mice xenografted with the tumor. The proliferation‐, angiogenesis‐, and apoptosis‐associated factors levels were determined using Immunoblotting. Results SIRT3, FOXO3, and CDT1 expression was suppressed in the lung cancer tissues and cells. FOXO3 positively regulates the CDT1 expression pattern and SIRT3 elevation inhibits FOXO3 at the acetylated level, thus, elevating FOXO3 expression. The elevation of SIRT3, FOXO3, or CDT1 inhibited cell cisplatin resistance of lung cancer cells as well as inhibited viability, proliferation, and invasion in vitro. In vivo experiments, SIRT3 depletion elevated Ki‐67 and VEGFA levels, but downregulated cleaved caspase 3 level. Conclusion Collectively, overexpressed SIRT3 elevates expression of FOXO3a/CDT1 axis, thus, contributing to enhanced sensitivity of lung cancer cells.
Cholangiocarcinoma is a highly aggressive malignant tumor, and its incidence is increasing all over the world. More and more evidences show that the aberrant expression of circular RNAs play important roles in tumorigenesis and progression. Current studies on the expression and function of circRNAs in cholangiocarcinoma are scarce. In this study, circ-ZNF609 was discovered as a novel circRNA highly expressed in cholangiocarcinoma for the first time. The circ-ZNF609 expression is connected with the advanced TNM stage, lymphatic invasion and survival time in cholangiocarcinoma patients, and can be used as an independent prognostic factor for the patients. Circ-ZNF609 can promote the cholangiocarcinoma cells proliferation, migration and invasion in vitro , it can also catalyze the xenograft growth in vivo . The promoting effect of circ-ZNF609 on cholangiocarcinoma is achieved via oncogene LRRC1 up-regulation through targeting miR-432-5p by endogenous competitive RNA mechanism. In addition, transcription factor YY1 can bind to the promoter of ZNF609 to further facilitate the transcription of circ-ZNF609. RNA binding protein eIF4A3 can bind to the pre-mRNA of circ-ZNF609 which promotes the circ-ZNF609 circular formation. Overall, YY1/eIF4A3/circ-ZNF609/miR-432-5p/LRRC1 have a significant role in progression of cholangiocarcinoma, and circ-ZNF609 is expected to become a novel biomarker for targeted therapy and prognosis evaluation of cholangiocarcinoma.
Long noncoding RNAs (lncRNAs) have been reported to exhibit a crucial regulatory role in tumor progression, including cholangiocarcinoma (CCA). As a promising lncRNA, proteasome 20S subunit alpha 3 antisense RNA 1 (PSMA3-AS1) is involved in development of various tumors. However, the role and function of PSMA3-AS1 in CCA remain unclear. The aim of this study is to examine the expression, function, mechanism, and clinical significance of PSMA3-AS1 in CCA development. By TCGA database analysis, we found that PSMA3-AS1 was overexpressed in CCA. Consistent with the TCGA analysis, PSMA3-AS1 was significantly overexpressed in CCA tissues and cells by RT-qPCR. Upregulated PSMA3-AS1 was related to lymph node invasion, advanced TNM stage and poor survival, and was an independent risk factor of prognosis for CCA patients. Functionally, CCK-8, EdU and colony formation assays confirmed that upregulated PSMA3-AS1 promoted CCA cell proliferation, whereas downregulated PSMA3-AS1 inhibited proliferation. This result was further confirmed by subcutaneous tumor formation in nude mice. Wound healing and transwell assays confirmed that increased PSMA3-AS1 promoted CCA cell migration and invasion, whereas decreased PSMA3-AS1 inhibited these biological phenotypes. In addition, PSMA3-AS1 promoted the EMT process of CCA by downregulating E-cadherin and upregulating N-cadherin and vimentin. Mechanistically, transcription factor PAX5 bound to the promoter region of PSMA3-AS1 and promoted its transcription. Simultaneously, PSMA3-AS1 primarily localized in the cytoplasm could competitively bind miR-376a-3p to upregulate LAMC1, thereby accelerating CCA progression. This study uncovers that PSMA3-AS1 functions as a cancer-promoting gene in CCA, and PAX5/PSMA3-AS1/miR-376a-3p/LAMC1 axis plays a vital role in CCA development.
CircRNAs have been the focus of research in recent years. They are differentially expressed in various human tumors and can regulate oncogenes and tumor suppressor genes expression through various mechanisms. The diversity, stability, evolutionary conservatism and cell- or tissue-specific expression patterns of circRNAs also endow them with important regulatory roles in promoting or inhibiting tumor cells malignant biological behaviors progression. More interestingly, emerging studies also found that circRNAs can regulate not only other genes expression, but also their parental gene expression and thus influence tumors development. Apart from some conventional features, circRNAs have a certain specificity in the regulation of parental gene expression, with a higher proportion affecting parental gene transcription and easier translation into protein to regulate parental gene expression. CircRNAs are generally thought to be unable to produce proteins and therefore the protein-coding ability exhibited by circRNAs in regulating parental gene expression is unique and indicates that the regulatory effects of parental gene expression by circRNAs are not only a competitive binding relationship, but also a more complex molecular relationship between circRNAs and parental gene, which deserves further study. This review summarizes the molecular mechanisms of circRNAs regulating parental gene expression and their biological roles in tumorigenesis and development, aiming to provide new ideas for the clinical application of circRNAs in tumor-targeted therapy.
CircRNAs (circular RNAs) are single-stranded RNAs that form covalently closed loops and function as important regulatory elements of the genome through multiple mechanisms. Increasing evidence had indicated that circRNAs, which might serve as either oncogenes or tumor suppressors, played vital roles in the pathophysiology of human diseases, especially in tumorigenesis and progression. CircRNA-ZFR (circular RNA zinc finger RNA binding protein) is a circular RNA that had attracted much attention in recent years. It has been found that circRNA-ZFR was abnormally expressed in a variety of malignant tumors, and its dysregulated expression was closely related to tumor stage, cancer metastasis and patients’ prognosis. Recent studies had shown that aberrantly expressed circRNA-ZFR could regulate the malignant biological behaviors of tumors through various mechanisms; further exploration of circRNA-ZFR expression in tumors and its regulation on malignant biological behaviors such as tumor proliferation, invasion and drug resistance will provide new ideas for clinical tumors diagnosis and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.