BackgroundThe strategy of using fecal microbiota transplantation (FMT) for refractory ulcerative colitis (UC) remains unclear if single FMT failed to induce remission. This study aimed to evaluate the efficacy and safety of a designed step-up FMT strategy for the steroid-dependent UC.MethodsFifteen patients with steroid-dependent UC were enrolled, and treated with step-up FMT strategy. Follow-up clinical data was collected for a minimum of 3 months. Fecal microbiota composition before and post FMT of patients and related donors were analyzed by 16S rRNA sequencing.ResultsEight of fourteen (57.1 %) patients achieved clinical improvement and were able to discontinue steroids following step-up FMT. One patient was lost to follow-up. Among the 8 patients who responded, five (35.7 %) received one FMT therapy, one (7.1 %) received two FMTs, and two (14.2 %) received two FMTs plus a scheduled course of steroids. Four (28.6 %) of the 8 patients who responded maintained long-term remission during follow-up (3–18 months). Six patients (42.9 %) failed to meet the criteria of clinical improvement and maintained steroid dependence, though three experienced transient or partial improvement. Microbiota analysis showed that FMT altered the composition greatly, and a microbiota composition highly similar to that of the donor emerged in the patients with successful treatment. No severe adverse events occurred during treatment and follow-up.ConclusionsStep-up FMT strategy shows promise as a therapeutic strategy for patients with steroid-dependent UC, likely due to the successful restructuring of gut microbial composition.Trial registration: ClinicalTrials.gov, Number NCT01790061Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-015-0646-2) contains supplementary material, which is available to authorized users.
The abnormal activation of Wnt/β-catenin signaling plays a critical role in the development of lung cancer, which is also important in the generation and maintenance of lung cancer stem cell (CSC). CSCs have unique capabilities to resist anticancer therapy, seed recurrent tumors, and disseminate to and colonize distant tissues. Apatinib, a small-molecule VEGFR2-tyrosine kinase inhibitor, shows highly efficient antitumor activity in heavily treated, chemoresistant, and metastatic lung cancer. We speculated that inhibition of Wnt/β-catenin signaling and targeting lung CSCs could be one of the anti-tumor mechanisms of apatinib. In the present study we demonstrated that apatinib repressed lung CSC-like traits by hindering sphere formation ability, lung CSC-related marker expression and decreasing chemoresistance derived stemness. Mechanistically, apatinib exerted its anti-CSC effects by inhibiting β-catenin and its downstream targets. Moreover, apatinib induced the production of reactive oxyen species (ROS), which participated in the inhibitory effects of apatinib on lung CSCs. It was found that β-catenin regulated apatinib-induced production of ROS. Inhibition or promotion of ROS production with N-acetyl-L-cysteine or H2O2 not only upregulated or downregulated β-catenin expression, but also prevented or promoted DNA damage, rescued or impeded sphere formation, respectively. Collectively, our findings reveal that apatinib directly inhibits β-catenin signaling and promotes ROS generation to suppress lung CSC-like characteristics. A clearer understanding of the anti-cancer mechanisms of apatinib is required for its better application in combating advanced and refractory/recurrent lung cancer when combined with conventional chemotherapy.
Ambient fine particulate matter (PM2.5) is capable of inducing pulmonary oxidative injury. Autophagy maintains basal cellular homeostasis and plays a critical role in the pathogenesis of lung diseases. Resveratrol, a natural polyphenol, is an effective antioxidant agent against particulate matter (PM)-induced injuries. The current study was designed to investigate whether resveratrol can regulate autophagy in the process of PM2.5-mediated pulmonary oxidative injury. In the mice model of PM2.5 exposure, we found that PM2.5 increased the contents of malondialdehyde (MDA) and nitric oxide (NO) while decreased the expression of nuclear factor erythroid-2-related factor 2 in the lungs. The levels of 8-hydroxydeoxyguanosine and inflammatory cytokines were increased following PM2.5 exposure. Histological analysis of the lungs revealed inflammatory change in PM2.5 group. Meanwhile, PM2.5 triggered autophagy, as evidenced by the elevated expression of microtubule-associated proteins light chain 3II, Beclin1 and p62. Transmission electron microscopy images showed that autophagosomes accumulated in the lungs after PM2.5 exposure. Furthermore, resveratrol intervention suppressed autophagy and attenuated the oxidative injury resulting from PM2.5 exposure. Our findings provided a valuable insight into the underlying mechanism for the protective effects of resveratrol against PM2.5-induced lung injury, which involves suppression of the autophagic process. KEYWORDS autophagy, lung, oxidative injury, PM2.5, resveratrol * Yuan Li and Suming Fu contributed equally to this work.
Background The purpose of present study is to assess the effects of active localization and vascular preservation of inferior parathyroid glands in central neck dissection (CND) for papillary thyroid carcinoma (PTC). Methods A classification of IPGs according to their location and vascular features was developed, and, based on this classification, a CND procedure was designed, and IPGs and their vascular were actively localized and strategically preserved. A total of 197 patients with PTC who underwent a total thyroidectomy and concomitant CND were enrolled. Eighty-nine patients with traditional meticulous fascia dissection were allocated to group A, and 108 patients with active location and vascular preservation of IPGs were allocated to group B. Those with inferior parathyroid glands auto-transplantation in each group were assigned as group At (18) and group Bt (12). Variables including serum intact parathyroid hormone (PTH), total calcium, the incidence of transient, and permanent hypoparathyroidism were studied. Results Compared with group A, serum intact PTH (P < 0.001) and total calcium levels (P < 0.05) in group B significantly improved on the first postoperative day, and the incidence of transient hypoparathyroidism significantly dropped in group B (P < 0.001). A total of 170 patients in the two groups had complete follow-up data. The incidence of permanent hypoparathyroidism significantly decreased in group B, from 8.8% to 1.0% (P = 0.017). However, there were no significant differences in all variables between group Bt and group At. Conclusion Active location and vascular preservation of inferior parathyroid glands effectively protected the function of IPGs in CND for PTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.