No abstract
Motivated by the following two observations: 1) people are aging differently under different conditions for changeable facial attributes, e.g., skin color may become darker when working outside, and 2) it needs to keep some unchanged facial attributes during the aging process, e.g., race and gender, we propose a controllable face aging method via attribute disentanglement generative adversarial network. To offer fine control over the synthesized face images, first, an individual embedding of the face is directly learned from an image that contains the desired facial attribute. Second, since the image may contain other unwanted attributes, an attribute disentanglement network is used to separate the individual embedding and learn the common embedding that contains information about the face attribute (e.g., race). With the common embedding, we can manipulate the generated face image with the desired attribute in an explicit manner. Experimental results on two common benchmarks demonstrate that our proposed generator achieves comparable performance on the aging effect with state-of-the-art baselines while gaining more flexibility for attribute control. Code is available at supplementary material.
Many retrieval applications can benefit from multiple modalities, for which how to represent multimodal data is the critical component. Most deep multimodal learning methods typically involve two steps to construct the joint representations: 1) learning of multiple intermediate features, with each intermediate feature corresponding to a modality, using separate and independent deep models; 2) merging the intermediate features into a joint representation using a fusion strategy. However, in the first step, these intermediate features do not have previous knowledge of each other and cannot fully exploit the information contained in the other modalities. In this paper, we present a modal-aware operation as a generic building block to capture the non-linear dependencies among the heterogeneous intermediate features, which can learn the underlying correlation structures in other multimodal data as soon as possible. The modal-aware operation consists of a kernel network and an attention network. The kernel network is utilized to learn the non-linear relationships with other modalities. The attention network finds the informative regions of these modal-aware features that are favorable for retrieval. We verify the proposed modal-aware feature learning in the multimodal hashing task. The experiments conducted on three public benchmark datasets demonstrate significant improvements in the performance of our method relative to state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.