The university course timetabling problem looks for the best schedule, to satisfy given criteria as a set of given resources, which may contain lecturers, groups of students, classrooms, or laboratories. Developing a timetable is a fundamental requirement for the healthy functioning of all educational and administrative parts of an academic institution. However, factors such as the availability of hours, the number of subjects, and the allocation of teachers make the timetable problem very complex. This study intends to review several optimization algorithms that could be applied as possible solutions for the university student course timetable problem. The reviewed algorithms take into account the demands of institutional constraints for course timetable management.
This article reviews conductive fabrics made with the conductive polymer poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), their fabrication techniques, and their applications. PEDOT:PSS has attracted interest in smart textile technology due to its relatively high electrical conductivity, water dispersibility, ease of manufacturing, environmental stability, and commercial availability. Several methods apply PEDOT:PSS to textiles. They include polymerization of the monomer, coating, dyeing, and printing methods. In addition, several studies have shown the conductivity of fabrics with the addition of PEDOT:PSS. The electrical properties of conductive textiles with a certain sheet resistance can be reduced by several orders of magnitude using PEDOT:PSS and polar solvents as secondary dopants. In addition, several studies have shown that the flexibility and durability of textiles coated with PEDOT:PSS can be improved by creating a composite with other polymers, such as polyurethane, which has high flexibility and extensibility. This improvement is due to the stronger bonding of PEDOT:PSS to the fabrics. Sensors, actuators, antennas, interconnectors, energy harvesting, and storage devices have been developed with PEDOT:PSS-based conductive fabrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.