Concerning human and environmental health, safe alternatives to synthetic pesticides are urgently needed. Many of the currently used synthetic pesticides are not authorized for application in organic agriculture. In addition, the developed resistances of various pests against classical pesticides necessitate the urgent demand for efficient and safe products with novel modes of action. Botanical pesticides are assumed to be effective against various crop pests, and they are easily biodegradable and available in high quantities and at a reasonable cost. Many of them may act by diverse yet unexplored mechanisms of action. It is therefore surprising that only few plant species have been developed for commercial usage as biopesticides. This article reviews the status of botanical pesticides, especially in Europe and Mediterranean countries, deepening their active principles and mechanisms of action. Moreover, some constraints and challenges in the development of novel biopesticides are highlighted.
A survey of the prevalence of rigid ryegrass (Lolium rigidum) resistant to ACCase and ALS herbicides was conducted in major-cereal growing regions in the north of Tunisia. Randomly collected ryegrass populations were assessed, using the Syngenta RISQ® test, for resistance to clodinafop-propargyl, iodosulphuron + mesosulphuron and pinoxaden. Of the 177 tested populations, 58% exhibited resistance to clodinafop-propargyl and 52% to iodosulphuron + mesosulphuron, with 40% exhibiting resistance to both herbicides. Significant variations in the frequencies of rigid ryegrass resistant to clodinafop-propargyl and/or iodosulphuron + mesosulphuron were observed between surveyed regions which may be the result of differences in the history of herbicide use. Over 50% of resistant populations contained 60% of resistant plants or more, indicating the extent of resistance evolution in these regions. Our study demonstrates that the extent of resistance to ACCase and ALS-inhibiting herbicides in rigid ryegrass is widespread in major cereal-growing regions of Tunisia. Therefore, weed management must be focused on reducing the frequency of herbicide application, using multiple herbicide mechanisms of action, rotating different modes of action and integrating alternative control options.
Abstract:The good understanding of the mechanisms of resistance to herbicides in weeds is a necessity to implement sustainable weed management strategies. Here, a study was conducted to characterize the molecular bases of resistance to acetyl coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS) inhibiting herbicides in Lolium rigidum populations from Tunisia. Nine Lolium rigidum (ryegrass) populations collected in wheat fields from Northern Tunisia were investigated for their resistance to two ACCase-inhibiting herbicides and an ALS-inhibiting herbicide. All populations were tested in the greenhouse in pots using the commercial dose to determine resistance status. Survival plants were also tested for the presence of two ACCase (L1781 and N2041) and two ALS (P197 and W574) mutant resistant alleles using molecular markers. Resistance to ACCase-inhibiting herbicides was found in all tested populations. Comparison of the results from herbicide sensitivity bioassays with genotyping indicated that more than 80% of the plants resistant to ACC-inhibiting herbicides would be resistant via increased herbicide metabolism. However, ALS-inhibiting herbicides are still more or less controlling ACCase resistant populations, so indicating that the selection process of resistance is ongoing. Target-site resistance appears to be the major mechanism for these early cases of ALS inhibitor resistance. This study reported the first case of resistance to ALS-inhibiting herbicides in ryegrass in Tunisia, and investigated the molecular bases of this resistance. It establishes the clear importance of non target-site resistance to ACCase-and/or ALS-inhibiting herbicides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.